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Abstract
Graph homomorphism problems involve finding
adjacency-preserving mappings between two given
graphs. Although theoretically hard, these prob-
lems can often be solved in practice using con-
straint programming algorithms. We show how
techniques from the state-of-the-art in subgraph
isomorphism solving can be applied to broader
graph homomorphism problems, and introduce a
new form of filtering based upon clique-finding.
We demonstrate empirically that this filtering is ef-
fective for the locally injective graph homomor-
phism and subgraph isomorphism problems, and
gives the first practical constraint programming ap-
proach to finding general graph homomorphisms.

1 Introduction
The subgraph isomorphism problem, as defined by Garey and
Johnson [1979], is to determine whether an injective map-
ping exists from one given graph to another, such that adja-
cent pairs of vertices are mapped to adjacent pairs of vertices,
and non-adjacent vertices are mapped to non-adjacent ver-
tices. However, in application-oriented papers, particularly
from bioinformatics and chemistry, the same name is often
implicitly used to mean the non-induced version of the prob-
lem (which does not require that non-adjacency be preserved)
since this more accurately models the real-world problem be-
ing solved [Willett, 1999; Ehrlich and Rarey, 2011]. De-
spite being theoretically hard problems, these applications,
along with others in areas including compilers [Blindell et
al., 2015], graph databases [McCreesh et al., 2018] and pat-
tern recognition [Foggia et al., 2014], have given rise to
a large amount of research into designing practical algo-
rithms for solving these problems. Most approaches are
based either upon very fast but simple backtracking algo-
rithms [Cordella et al., 2004; Bonnici et al., 2013; Carletti
et al., 2017] which often but not always perform well on very
easy instances, or upon constraint programming algorithms
[Zampelli et al., 2010; Solnon, 2010; Audemard et al., 2014;
McCreesh and Prosser, 2015; Archibald et al., 2019], which
have higher startup costs but that perform vastly better on
harder instances and much more consistently on easy in-
stances [McCreesh et al., 2018; Solnon, 2019].

The current state of the art is the Glasgow Subgraph Solver
[McCreesh et al., 2020], which is a dedicated constraint pro-
gramming solver for subgraph-finding problems. Much of
its performance comes from inference strategies based upon
degrees and neighbourhood degree sequences [Zampelli et
al., 2010], counting paths between vertices [Audemard et al.,
2014; McCreesh and Prosser, 2015], and cardinality reason-
ing [Solnon, 2010], which can be used to eliminate many
infeasible candidate assignments without search. Like most
other solvers, it can handle both the non-induced version of
the problem and the traditional induced variant, and users
can select whichever variant better fits their application. It
also supports directed edges, and can use an external con-
straint solver to handle other extensions to the basic notion of
a graph, such as temporal networks and multi-graphs.

As well as questions over exactly how edges are repre-
sented and mapped, some applications would prefer not to
specify injectivity. A graph homomorphism is a function
between two graphs that maps adjacent vertices to adjacent
vertices, with no injectivity requirement, whilst a locally in-
jective homomorphism is one which is injective when re-
stricted to any individual vertex and its neighbourhood. Both
are better models for some applications [Fiala et al., 2001;
Baget, 2005; Corby and Faron-Zucker, 2007; Fiala and Kra-
tochvı́l, 2008; Fan et al., 2010; Chaplick et al., 2015].

These injectivity relaxations have received much less at-
tention from a practical solving perspective. One might hope
that the inference techniques developed for subgraph isomor-
phism would also be helpful for other graph homomorphism
problem variants. Indeed, this paper proves that many, but
not all, of these strategies are also valid in the locally injec-
tive case, and that simple distance filtering is valid for all
homomorphisms. However, we also show that none of the
other strategies are valid for finding homomorphisms where
there is no injectivity requirement. Finally, we introduce a
new filtering technique that is based upon finding a maximum
clique in the neighbourhood of each domain vertex, which
is valid even in the general case. Although this new filter-
ing technique involves solving many additional NP-complete
problems as a preprocessing step, we demonstrate that it is
effective in practice, particularly for the non-injective prob-
lem where filtering allows a constraint programming algo-
rithm to solve instances over eight hundred times faster in
aggregate, over a collection of over fourteen thousand stan-



dard benchmark instances. This shows, for the first time, that
modern constraint programming techniques can be practical
for less constrained graph homomorphism finding problems;
previous algorithmic approaches have focused instead upon
worst-case computational bounds (e.g. Fomin et al.; Fiala and
Kratochvı́l; Rzazewski; Chaplick et al. [2007; 2008; 2014;
2015]), whose practical utility has yet to be demonstrated.
The empirical effectiveness of our results is especially impor-
tant because many applications use subgraph isomorphism
solvers only because they perform well off the shelf, rather
than because they exactly match domain requirements.

2 Background and Theory
We begin by introducing notation and terminology, and by
giving the theory which supports our implementation.

Graphs. Let G and H be graphs. Let v ∈ V(G) be a ver-
tex of G. The (open) neighbourhood of v, written NG(v), is
the set of vertices adjacent to v not including v itself, whilst
the closed neighbourhood of v, written NG[v], is the neigh-
bourhood of v plus v. The degree of a vertex, degG(v), is the
cardinality of its open neighbourhood. The neighbourhood
degree sequence of a vertex is the sequence consisting of the
degrees of its neighbours, in descending order. Given a vertex
set S ⊆ V(G), the subgraph induced by S, written G[S], is
the subgraph ofGwith only the vertices in S together with all
the edges between them. A clique is a subgraph where every
vertex is adjacent to every other in the subgraph.

Homomorphisms. A homomorphism from G to H is a
function mapping vertices of G to vertices of H , such that
adjacent vertices in G are mapped to adjacent vertices in H .
A homomorphism h is locally injective if for every vertex w,
the restriction of h to G[NG[w]] is injective; if h is injective
globally we call it a (non-induced) subgraph isomorphism.

Loops. A vertex which is adjacent to itself is called a loop.
By a careful reading of the definition, any homomorphism
must map loops onto loops—and indeed, the Glasgow Sub-
graph Solver and this paper take this approach (although
some other algorithm implementations do not). It there-
fore follows that for the homomorphism decision problem
where there are no injectivity constraints, any problem in-
stance which has a loop in the codomain graph is trivially
satisfiable (although the counting problem remains #P-hard
[Dyer and Greenhill, 2000]).

Constraint programming. A constraint satisfaction prob-
lem is defined in terms of a set of variables, each of which
has a domain of possible values, together with a set of con-
straints; the goal is to give each variable a value from its do-
main, whilst satisfying all of the constraints. Homomorphism
problems have a natural representation as a constraint satis-
faction problem: we have a variable for each vertex in the
domain graph, whose values range over the codomain graph,
and a set of constraints saying that adjacent vertices must be
mapped to adjacent vertices. For the injective variants, one
or more all-different constraints are also present. A typical
constraint programming approach to solving such a problem
is to combine inference through constraint propagation with
an intelligent backtracking search.

Figure 1: Counter-examples for various properties which are not
invariants. The different shapes for vertices show a mapping, with
vertices being mapped to vertices of the same shape. The top left
example shows that degree is not preserved in a homomorphism; the
top right that path counts are not preserved in a homomorphism; the
bottom left that path counts of length three are not preserved in a
locally injective homomorphism; and the bottom right that a locally
injective homomorphism i can give rise to a homomorphism i2,2

which is not locally injective.

Degree-based invariants. Constraint programming tech-
niques for finding homomorphisms can be made much more
effective by exploiting certain invariants. It is straightforward
to verify the following.
Proposition 1 (neighbourhood degree sequences are pre-
served). Suppose i is a locally injective homomorphism from
G to H . Let v be any vertex. Then i cannot map v to a ver-
tex of lower degree, degG(v) ≤ degH(i(v)). Furthermore, v
cannot be mapped to any vertex whose neighbourhood degree
sequence is not pointwise greater than or equal to its own.

Since subgraph isomorphisms are in particular locally in-
jective, these invariants also hold for subgraph isomorphisms
[Zampelli et al., 2010]; indeed, every recent constraint pro-
gramming approach for subgraph isomorphism finding makes
use of degrees and neighbourhood degree sequences. The
simplest way for a constraint programming algorithm to use
these results is as unary constraints, which are propagated
when domains are initialised, before search begins. For each
domain representing a domain vertex, any value representing
a codomain vertex whose degree or neighbourhood degree se-
quence is too low may immediately be rejected.

However, these invariants do not hold for homomorphisms
in general. As a counter-example, a homomorphism may map
a star graph onto a single edge, as in figure 1 (top left).
Path-based invariants. Constraint programming solvers
can also exploit invariants that are based upon paths. This is
done by automatically adding implied constraints to the prob-
lem that are implied by the original model, but that will give
stronger propagation power.
Proposition 2 (paths are preserved by subgraph isomor-
phisms). For the problem of finding a subgraph isomorphism
i from a graph G to a graph H , the following constraints are
implied for any pair of vertices v, w ∈ V(G):

1. The distance between v and w is at most the distance
between i(v) and i(w) [Audemard et al., 2014].

2. If there are at least k simple paths of length exactly `
between v and w, then there must be at least k simple
paths of length exactly ` between i(v) and i(w) [Mc-
Creesh and Prosser, 2015].

It is easy to verify that the first of these two properties
is valid for any homomorphism. The second property does



not hold for homomorphisms in general: for example, a pair
of vertices connected by three paths of length two may be
mapped onto a pair of vertices connected by a single path of
length two (see figure 1, top right). The second property also
does not hold in full generality for local injectivity, because,
for example, a path of length three may be mapped onto a
triangle (figure 1, bottom left): while standard injectivity pre-
vents any kind of merging, local injectivity only prevents two
vertices from being merged if they are both in the neighbour-
hood of the same vertex. However, a weaker result does hold:

Proposition 3 (paths of length two are preserved by locally
injective homomorphisms). For the problem of finding a lo-
cally injective graph homomorphism i from a graph G to a
graph H , for any pair of vertices v, w ∈ V(G), if there are
at least k simple paths of length exactly two between v and
w, then there must be at least k simple paths of length exactly
two between i(v) and i(w).

Proof. Let {x1, . . . , xn} be the intermediate vertices on the
paths of length two between v and w. Observe that each xj is
in the neighbourhood of v, and so must be mapped to differ-
ent vertices. Thus each sequence (i(v), i(xj), i(w)) gives a
distinct simple path of length two between i(v) and i(w).

Rather than using distance properties directly as Aude-
mard et al. [2014] did, McCreesh and Prosser [2015] intro-
duced the notion of supplemental graphs, with the idea that a
constraint programming algorithm can search for a mapping
which is simultaneously a subgraph isomorphism between
several different pairs of graphs. Let Gd be the graph with
the same set of vertices as G, but with an edge between ver-
tices v and w if the distance between v and w in G is at most
d. Similarly, let Gn,` be the graph with the same set of ver-
tices as G, but an edge between vertices v and w if there are
at least n simple paths of length exactly ` between v and w
in G. Following on from propositions 2 and 3, we generalise
the result of McCreesh and Prosser as follows.

Corollary 1. Any homomorphism i from G to H gives a ho-
momorphism id from Gd to Hd defined by id(v) = i(v), for
all d. Furthermore, if i is locally injective, then for all n,
there is a homomorphism in,2 from Gn,2 to Hn,2 defined by
in,2(v) = i(v).

Note carefully that in,2 is not necessarily locally injec-
tive, even if i is; we illustrate a counter-example in figure 1
(bottom right). This is in contrast to subgraph isomorphism,
where in,` is a subgraph isomorphism for all ` [McCreesh and
Prosser, 2015].

Cliques and homomorphisms. We now discuss the main
new technique of this paper. Observe that so far, we have not
seen any unary constraints which are valid for the general ho-
momorphism problem. All existing constraint programming
approaches for the subgraph isomorphism problem begin by
branching on the variable which has the smallest domain—
typically this will be a domain for a vertex of high degree, or
which has many high degree neighbours. Furthermore, once
one such guessed assignment has been made, adjacency prop-
agation means many other domains will be substantially re-
duced in size, making subsequent branching choices simpler.

However, for homomorphism problems, if we cannot find any
implied unary constraints then every domain will initially be
of the same size, which will make it much harder for a solver
to know where to start. This motivates the following.
Proposition 4 (Cliques are preserved). Let i be a homomor-
phism from G to H where H does not contain any loops. Let
S ⊆ V be such that G[S] is a k-vertex clique. Then H[i(S)]
is also a k-vertex clique.

Proof. Let j and k be two distinct vertices of the clique in
G. By definition of a homomorphism, i(j) and i(k) must be
adjacent. And, because H has no loops, i(j) 6= i(k).

Corollary 2. Proposition 4 holds for locally injective graph
homomorphisms and for subgraph isomorphisms even if
loops are present in the second graph.

Next we will discuss how this is useful in practice.

3 Design and Implementation
Having determined which commonly-used subgraph isomor-
phism invariants do and do not hold for other forms of homo-
morphism, and having discovered a new clique-based invari-
ant, we will now look at how these invariants may be used in
practice. Our starting point is the Glasgow Subgraph Solver
[McCreesh et al., 2020], due to it being the current strongest
solver for subgraph isomorphism. Adapting the solver to han-
dle locally injective and general homomorphism problems re-
quired the following straightforward changes.
Injectivity constraints. For subgraph isomorphism, injec-
tivity is handled by a combination of binary constraints and
a specialised bit-parallel all-different propagator [McCreesh
and Prosser, 2015]. This was disabled entirely for homo-
morphism problems, and for local injectivity only binary con-
straints were used.
Path-based filtering. For subgraph isomorphism, the Glas-
gow Subgraph Solver searches for a mapping which is si-
multaneously a subgraph isomorphisms between (G,H) and
each (Gn,2, Gn,2) for each n from 1 to 4, and option-
ally also between (G3, H3). For homomorphisms, we use
(G2, H2), whilst for locally injective homomorphisms we use
(Gn,2, Gn,2) for each n from 1 to 4.
Degree-based filtering. This was disabled for homomor-
phisms and left enabled for locally injective homomorphisms,
as per proposition 1. For subgraph isomorphism, the Glas-
gow Subgraph Solver uses degree and neighbourhood degree
sequences not just on the original graphs, but also on each
(Gn,`, Hn,`) graph pair. This is not possible for locally injec-
tive homomorphisms, due to the counter-example following
corollary 1.
Search order heuristics. The solver’s default search order
heuristics are based upon three principles: that it is good
to branch on variables with few remaining values in a do-
main, that it is good to branch on variables correspond-
ing to high-degree vertices, and that it is good to try map-
ping to vertices of high degree [McCreesh et al., 2018;
Archibald et al., 2019]. These principles do not appear to
be specific to subgraph isomorphism, and so we do not alter
the search order heuristics.



Loops. For the homomorphism decision problem, we mod-
ified the solver so that if the codomain graph contains a loop,
we immediately return a satisfying assignment mapping ev-
ery vertex to one of these loops.

3.1 Clique Filtering
Implementing clique constraints required substantially more
work. The Glasgow Subgraph Solver contains a maximum
clique implementation, which is based upon a variation of
Tomita et al. [2010]’s MCS algorithm which Prosser [2012]
calls “MCSa1”, with bit-parallelism [San Segundo et al.,
2013] and an altered branching scheme for faster optimal-
ity proofs [McCreesh and Prosser, 2014]. The implemen-
tation also makes use of a shortcut due to Batsyn et al.
[2014], which allows certain cliques to be detected without
branching—this turns out to be particularly useful in this set-
ting, making many of the clique instances generated solv-
able without branching. Initially we used this solver to per-
form domain filtering as a preprocessing step. Preliminary
experiments showed that a naı̈ve approach, which calculates
the maximum clique size for the neighbourhood of each do-
main vertex and each codomain vertex, would add as much
as three minutes of preprocessing time to some problem in-
stances which could otherwise be solved in a few seconds.
We therefore invested more engineering effort, as follows.

Assuming a problem instance is not detected as obviously
unsatisfiable, we calculate the maximum clique size for the
neighbourhood of every domain vertex in turn. However, hav-
ing found a maximum clique with k vertices in the neighbour-
hood of a vertex p, we remember for every other vertex in this
maximum clique that its neighbourhood maximum clique size
is at least k. This can be used to accelerate subsequent clique
solver calls, by starting the branch and bound algorithm with
an initial incumbent size of k rather than zero.

We then move on to the codomain vertices, using a simi-
lar caching routine. Rather than calculating a clique size for
every single codomain vertex, we only calculate a value for
codomain vertices which are present in at least one variable’s
domain, after other unary constraints have been applied. Ad-
ditionally, we do not require the maximum clique solver to
run to completion and guarantee that it has found a maximum
clique. Instead, we allow it to stop as soon as it has found
a clique with as many vertices as the largest domain clique.
This is useful because it may be very hard to decide whether
a particular codomain vertex has neighbourhood clique size
of, say, 15 or 16, but if the largest domain vertex has a neigh-
bourhood clique size of only 5 then this is irrelevant.

3.2 Proof Logging
Given the complexity of modern solvers, a critical question
is how we can be sure that they are producing correct an-
swers. The Glasgow Subgraph Solver’s subgraph isomor-
phism and clique algorithms are both certifying [McConnell
et al., 2011]: that is, they can output a mathematical proof that
they have reached a correct answer by sound reasoning, and
this proof log can be verified by the VeriPB proof checking
tool [Gocht et al., 2020a; Gocht et al., 2020b]. We therefore
extended the solver’s existing proof logging support to cover
our additions. For the changes not involving clique-finding,

this was entirely routine—although proof logging did catch
an implementation bug where we were incorrectly applying
degree-based filtering on the G2,n graphs for locally injec-
tive homomorphisms, in violation of the counter-example to
corollary 1. For clique-based filtering, the process involved
substantially more technical work. Briefly, for a given do-
main vertex v that cannot be mapped to a codomain vertex
w, it is possible to instruct the proof verifier to derive a set of
conditional clique constraints saying that “either v cannot be
mapped to w, or the following clique-like problem must be
satisfiable” by following steps similar to the maximum com-
mon subgraph to clique reduction presented by Gocht et al.
[2020a], and then to reuse clique proof-logging techniques to
show that this clique-like problem is unsatisfiable. We were
thus able to produce and verifying proofs of correctness for
medium-sized instances, giving us confidence our implemen-
tation was correct.

This situation is not entirely ideal. The proofs produced
this way are inherently dependent upon a particular choice
of domain and codomain vertices. Thus, when proof logging,
we must solve restricted clique problems for each assignment
that is to be filtered using a clique rule, rather than for each
clique found; this is potentially a linear factor blowup. This
seems wasteful, since for any given codomain vertex these
proofs are effectively the same up to substitution of vari-
able names. It would therefore seem desirable to extend the
proof system with a substitution rule which would allow such
proofs to be recycled to avoid duplication.

4 Experiments
We now evaluate this approach empirically. Our experi-
ments are performed on a cluster of machines with dual In-
tel Xeon E5-2697A v4 CPUs with 512GBytes of RAM, run-
ning Ubuntu 18.04, and using a timeout of one hour; we do
not enable proof logging for these benchmarks since proof
logging introduces large slowdowns due to I/O costs [Gocht
et al., 2020a]. Because injectivity relaxations have received
less attention until now, for all three problem variants we will
use a suite of 14,621 benchmark instances designed for the
subgraph isomorphism problem [Kotthoff et al., 2016]. Note
that 8,904 of these instances contain at least one loop in the
codomain graph, and so are trivial for the homomorphism
problem—we still include these to avoid using different y-
axes on different plots.

In the top left plot of figure 2 we show the cumulative num-
ber of instances solved over time, for each of the three prob-
lem variants, using the Glasgow Subgraph Solver with and
without our clique-filtering added. For the homomorphism
problem, we also compare with distance filtering enabled or
disabled. For subgraph isomorphism, we further compare
against the PathLAD [Kotthoff et al., 2016], VF2 [Cordella et
al., 2004] and RI [Bonnici et al., 2013] solvers. To make the
details of this plot readable, the second row of figure 2 zooms
in on the results for each problem variant in turn. We see that
for the homomorphism problem, using either clique or dis-
tance filtering gives a clear improvement to performance, and
using both together is better still. For both injective problems,
clique filtering gives a more moderate improvement.
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Figure 2: On the top left, the cumulative number of instances solved over time for the three problem variants, with and without clique
filtering, and with and without distance filtering for the homomorphism problem; for comparison, results for subgraph isomoprhism using the
PathLAD, RI, and VF2 solvers are also shown. The remaining plots re-display this data, as follows. The three plots on the bottom row zoom
in on the cumulative number of instances solved, for the homomorphism problem on the left, the locally injective homomorphism problem in
the centre, and the subgraph isomorphism problem on the right. The top centre plot shows the additional number of instances solved at any
given time when using the new forms of filtering for all problem variants, and the top right plot shows the aggregate speedups from each form
of filtering.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

Homomorphism (Cliques)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

Homomorphism (Both)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

Locally Injective

100

101

102

103

104

105

106

100 101 102 103 104 105 106

Subgraph Isomorphism

Figure 3: Looking at the effects of additional filtering on an instance by instance basis, for homomorphism with just clique filtering and with
both clique and distance filtering, and for the other two variants with clique filtering. Each point represents one instance, the vertical axis is
the runtime with filtering in ms, and the horizontal axis is the runtime without filtering in ms (and so points below the diagonal are speedups).
Points on the outer axes are timeouts. The different point styles show the different families of instance from the benchmark set, and illustrate
that in each the filtering is broadly useful rather than being specific to a single kind of application.



To quantify these gains, the top centre plot of figure 2
shows the additional number of instances solved at any given
time (that is, the vertical distance between two cumulative
plots) when enabling additional filtering. We see that for sub-
graph isomorphism, at the one hour timeout we solve 22 ad-
ditional instances using clique filtering; for locally injective
homomorphisms, 21 additional instances; and for homomor-
phisms, 114, 146 or 193 additional instances using just dis-
tance filtering, just clique filtering, or both. Or, at the best
choices of timeouts, we solve 53 additional subgraph isomor-
phism instances; 64 additional locally injective instances; and
243, 383, and 424 additional homomorphism instances.

Alternatively, we can measure the horizontal distance be-
tween plots for a given choice of timeout t as follows. Let t′
be the last time no greater than t where the slower algorithm
solved an instance, and let u be the lowest amount of time
needed for the faster algorithm to solve the same number of
instances. The aggregate speedup, which we plot in the top
right of figure 2, is the ratio of t′ to u or u to t′ as appropriate.
At the one hour timeout, we see aggregate speedups of 2.2
for locally injective homomorphisms, 3.2 for subgraph iso-
morphism, and 47.5, 131.7, and 803.5 for homomorphisms.

The crossover point, where clique filtering begins to pay
off, is at around the 100ms mark without injectivity, and at
around one second for the injective problems. This does not
show how much time was spent in clique-finding, but rather
how long it takes for an algorithm with increased filtering
to catch up from a slower start. In fact, for domain graphs,
no maximum clique call took even one millisecond to com-
plete (and none required more than two hundred recursive
calls from the clique solver), and more time was spent setting
up the data structures to represent the neighbourhood graphs
than on the actual solving. For codomain graphs, 20,838,008
of the clique problems we solved took under a millisecond,
and the remaining 279 calls took between one and four mil-
liseconds, with no instance requiring more than a thousand
recursive calls. Although it may seem counter-intuitive to
try to speed up the solving of a hard problem by first solv-
ing many other hard problems, these values demonstrate that
clique-solving on these smaller graphs is much easier in prac-
tice than solving the larger problem, and so is worthwhile.

Finally, figure 3 plots instance-by-instance comparisons of
the runtimes. The point styles in these plots show different
families of benchmark instance, and demonstrate that the ben-
efits of filtering are not restricted to one application. They
also show that clique filtering very rarely makes performance
a lot worse, but often makes it a lot better.

5 Conclusion
Our results have shown that constraint programming ap-
proaches are viable for a wider range of subgraph mapping
finding problems than had previously been considered, and
will increase the versatility of subgraph solvers for applica-
tion users going forwards. We saw that using clique-finding
as a filtering step could give moderate to very large speedups
for different problem variants—although only through care-
ful engineering choices, to mitigate the potential cost of solv-
ing NP-hard problems. We would be interested to see if

filtering based upon other hard problems could give similar
benefits—for example, homomorphisms also interact in po-
tentially helpful ways with various colouring properties.
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Roberto Castañeda Lozano, Mats Carlsson, and Christian
Schulte. Modeling universal instruction selection. In
Principles and Practice of Constraint Programming - 21st
International Conference, CP 2015, 2015.

[Bonnici et al., 2013] Vincenzo Bonnici, Rosalba Giugno,
Alfredo Pulvirenti, Dennis E. Shasha, and Alfredo Ferro.
A subgraph isomorphism algorithm and its application
to biochemical data. BMC Bioinformatics, 14(S-7):S13,
2013.

[Carletti et al., 2017] Vincenzo Carletti, Pasquale Foggia,
Alessia Saggese, and Mario Vento. Introducing VF3: A
new algorithm for subgraph isomorphism. In Graph-Based
Representations in Pattern Recognition - 11th IAPR-TC-
15 International Workshop, GbRPR 2017, volume 10310
of LNCS, 2017.

[Chaplick et al., 2015] Steven Chaplick, Jirı́ Fiala, Pim van ’t
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