
Pseudo-Boolean Reasoning About States and1

Transitions to Certify Dynamic Programming and2

Decision Diagram Algorithms3

Emir Demirović #4

TU Delft, the Netherlands5

Ciaran McCreesh #6

University of Glasgow, Scotland7

Matthew J. McIlree #8

University of Glasgow, Scotland9

Jakob Nordström #10

University of Copenhagen, Denmark11

Lund University, Sweden12

Andy Oertel #13

Lund University, Sweden14

University of Copenhagen, Denmark15

Konstantin Sidorov #16

TU Delft, the Netherlands17

Abstract18

Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a19

variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or20

clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram21

solving, instead reasons about partial states and possible transitions between them. We describe a22

framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and23

use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because24

we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate25

this by providing proof logging for a dynamic programming based knapsack propagator inside a26

constraint programming solver.27

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of28

computation → Discrete optimization29

Keywords and phrases Proof logging, dynamic programming, decision diagrams.30

Supplementary Material Source code for the solvers described in this paper can be found here:31

Software: https://doi.org/10.5281/zenodo.1257462032

Funding Emir Demirović : part of the XAIT lab funded by the Delft AI Labs programme.33

Ciaran McCreesh: supported by a Royal Academy of Engineering research fellowship, and by the34

Engineering and Physical Sciences Research Council [grant number EP/X030032/1].35

Jakob Nordström: supported by the Swedish Research Council grant 2016-00782 and the Independent36

Research Fund Denmark grant 9040-00389B.37

Andy Oertel: supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)38

funded by the Knut and Alice Wallenberg Foundation.39

Konstantin Sidorov: part of the XAIT lab funded by the Delft AI Labs programme.40

Acknowledgements Part of this work was carried out while taking part in the semester program41

Satisfiability: Theory, Practice, and Beyond in 2021 at the Simons Institute for the Theory of42

Computing at UC Berkeley, and in the extended reunion of this semester program in the spring of43

2023. This work has also benefited greatly from discussions during the Dagstuhl Seminars 2241144

mailto:e.demirovic@tudelft.nl
https://orcid.org/0000-0003-1587-5582
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
mailto:m.mcilree.1@research.gla.ac.uk
https://orcid.org/0009-0005-5042-0876
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://orcid.org/0000-0001-9783-6768
mailto:k.sidorov@tudelft.nl
https://orcid.org/0009-0009-0655-4200
https://doi.org/10.5281/zenodo.12574620

2 Pseudo-Boolean Reasoning About States and Transitions

Theory and Practice of SAT and Combinatorial Solving and 23261 SAT Encodings and Beyond.45

1 Introduction46

It is sometimes vital that combinatorial solving algorithm implementations can be trusted to47

give correct answers. To this end, when claiming that a problem has no solution, Boolean48

satisfiability (SAT) solvers do not just assert unsatisfiability, but also provide an independently49

verifiable proof of this fact, in one of several standard formats such as DRAT [20, 19, 35],50

LRAT [10], or VeriPB [13]. The proof can then be inspected by a formally verified proof51

checker to assert its correctness. This means the algorithm is certifying [28]: while we still52

cannot trust that the implementation is correct, this does guarantee that if it ever gives an53

incorrect answer, then we can detect it.54

Of the above proof formats, VeriPB is the most general-purpose: as well as supporting55

advanced SAT-solving techniques such as parity reasoning [18], symmetry and dominance56

breaking [4], and MaxSAT optimisation [1], it has also been used for subgraph-finding57

algorithms [16, 14, 15] and for constraint programming with a variety of global constraints58

[17, 29]. In these latter settings, a VeriPB proof resembles a description of a backtracking59

search tree, interleaved with justifications of facts obtained from inference algorithms or60

constraint propagation. However, the VeriPB proof format has no direct notion of a search61

tree. Instead, its underlying proof system is powerful enough to express implicational62

reasoning. In particular, constraints may be reified and dereified, and if some fact can be63

derived, it can also be derived under a sequence of guesses with (almost) no additional64

effort. This is in contrast to, e.g., the VIPR proof format [8], which was designed specifically65

for mixed integer programming and which has explicit notions of assumptions and closing66

branches that function independently from other proof rules. An advantage of a sufficiently67

powerful proof system that does not have a direct notion of search is that techniques like68

restarts [16] and autotabulation [17] can be encoded without needing additions to the proof69

system.70

However, there are non-search-based ways of solving hard problems. Both dynamic71

programming and decision diagram algorithms can be viewed as working with partial states,72

and transitions between those states [22, 3]. In this work, we show that VeriPB can also73

be used for efficient proof logging for algorithms that work with states and transitions,74

rather than search, regardless of whether the algorithm uses memoisation, a matrix, or a75

layer-by-layer construction. This is primarily because the pseudo-Boolean constraints and76

extended cutting planes proof system underlying VeriPB makes it very clean to work with77

implications.78

Using a common system, rather than inventing a new proof system for dynamic pro-79

gramming proofs, has several benefits: it allows us to reason about hybrid or nested solving80

strategies that use more than one kind of algorithm, it avoids the need to reinvent proof81

logging for various kinds of constraint and dominance reasoning, and it gives us immediate82

access to a suite of proof checking tools which would otherwise be expensive to recreate.83

To illustrate this, we have implemented proof logging for a knapsack constraint inside a84

constraint programming solver, whose propagator involves reasoning about paths through85

a dynamic programming table or decision diagram to detect loss of support for values in86

constraint programming variables [34].87

E. Demirović et al 3

2 Background88

Before we can talk about proofs for dynamic programming problems, we give a brief overview89

of the VeriPB proof system, and outline how it has been used to generate proofs for90

backtracking search algorithms.91

2.1 Pseudo-Boolean Preliminaries92

Although designed to support many different kinds of solvers, the foundations of the VeriPB93

proof system are Boolean variables and pseudo-Boolean constraints. Let xi be a set of94

Boolean variables ranging over 0 (false) and 1 (true). We write xi to mean 1− xi (i.e. not95

x), and refer to xi and xi as literals. A pseudo-Boolean (PB) constraint over literals ℓi is96

an inequality in the form
∑

i ciℓi ▷◁ A, where ▷◁ is either ≥ or ≤ and ci and A are integer97

constants. A PB constraint can always be rewritten in normalised form
∑

i ciℓi ≥ A with all98

literals over distinct variables and all ci and A non-negative, and when describing the proof99

system we will assume constraints are normalised. A PB optimisation problem is a set of PB100

constraints, together with an objective
∑

i ciℓi to be minimised.101

Let C =
∑

i ciℓi ≥ A be a PB constraint, and y and yj be distinct literals. We define C to102

mean
∑

i ciℓi ≤ A−1; ∧jyj ⇒ C to mean
∑

j Kyj+
∑

i ciℓi ≥ A where K = A−
∑

i min(ci, 0);103

and y ⇔ C to mean the pair of PB constraints y ⇒ C and y ⇒ C. It is easy to check that104

the constraints defined in this way have the meaning suggested by the notation used. Note105

how, unlike for Boolean formulae in conjunctive normal form (CNF), full reification of a106

pseudo-Boolean constraint by a literal requires only a pair of constraints.107

2.2 The VeriPB Proof System108

In a VeriPB proof, we begin with a set of pseudo-Boolean constraints as input—these are109

assumed, as axioms, and so they must accurately describe the high-level problem being110

solved. A proof is then a sequence of pseudo-Boolean constraints, where each new constraint111

follows either obviously or by explicit construction from the input and any other constraints112

already derived, in such a way that at least one optimal solution is always preserved.113

When proof steps consist of explicit constructions, they are given as a sequence of114

cutting planes steps [7], as follows. For any literal ℓi, we may freely introduce a constraint115

ℓi ≥ 0. Given two constraints
∑

i aiℓi ≥ A and
∑

i biℓi ≥ B, we may add them together to116

derive
∑

i(ai + bi)ℓi ≥ A + B. We may also multiply by a positive integer constant c, to get117 ∑
i caiℓi ≥ cA, or (assuming normalised form) divide to get

∑
i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
. Finally, we can118

saturate, turning (again assuming normalised form)
∑

i aiℓi ≥ A into
∑

i min (ai, A) ℓi ≥ A.119

A clausal constraint, or clause, is one of the form
∑

i ℓi ≥ 1. This corresponds naturally120

to a Boolean clause in CNF. By resolution, we mean deriving
∑

i xi +
∑

j yj ≥ 1 from the121

clauses r +
∑

i xi ≥ 1 and r +
∑

j yj ≥ 1; this may be achieved by adding the constraints and122

then saturating [21]. In particular, resolution allows us to take the clauses r ⇒
∑

i xi ≥ 1123

and r +
∑

j yj ≥ 1 and derive
∑

i xi +
∑

j yj ≥ 1. Proof steps such as this that involve124

implications are generally straightforward in cutting planes: for example, if we have both125

r ⇒
∑

i aixi ≥ A and s⇒ r, we may easily derive that s⇒
∑

i aixi ≥ A by multiplication126

and then addition. As a special case of this, if we have established that the left hand side of127

an implication must be true, then we can dereify the implication and derive its right hand128

side unconditionally. Another useful fact, which we use repeatedly throughout this work, is129

that if we have a process for deriving a constraint D from a set of constraints Ci, then we can130

4 Pseudo-Boolean Reasoning About States and Transitions

reuse this process to derive a reified version of D if we are given a set of reified constraints131

C ′
i; we explain this in detail in the appendix.132

An alternative to cutting planes steps is to allow the proof verifier to add constraints that133

are obvious enough that they do not require an explicit derivation. A constraint C follows by134

reverse unit propagation (RUP) if adding C to the existing set of constraints leads immediately135

to contradiction upon achieving integer bounds consistency for each constraint individually136

[9]. Obviously such constraints are implied, and this condition can be verified efficiently, so a137

RUP constraint may safely be added as a proof step. (The term unit propagation is used138

due to the SAT origins of proof logging [12]; if all constraints are clauses, integer bounds139

consistency and unit propagation are equivalent.) As with cutting planes proofs, RUP proof140

procedures can trivially be modified to work subject to reifications.141

The VeriPB proof system also has a non-implicational strengthening rule [4]. We do142

not use the full generality of the rule in this paper, but will use it as an extension rule.143

An extension variable z reifying an arbitrary PB constraint C is a variable which has not144

previously been used, which is introduced in a proof alongside the pair of constraints z ⇔ C;145

the strengthening rule can be used to introduce an extension variable in this way. We146

will also use strengthening to implement fusion resolution: given r ⇒
∑

i aixi ≥ A and147

r ⇒
∑

i aixi ≥ A′, strengthening lets us derive that
∑

i aixi ≥ min(A, A′).148

A proof of unsatisfiability ends by deriving 0 ≥ 1. For an optimisation problem with149

objective expression
∑

i ciℓi, a VeriPB proof will conclude by demonstrating that the objective150

lies between two integer lower and upper bounds—for an exact solution, these will be the151

same. To do this, a proof step may witness a solution by giving a partial assignment to152

variables. The proof checker verifies that this assignment unit propagates to a complete153

feasible assignment to all variables, and then introduces a new objective-improving constraint154 ∑
i ciℓi ≤ A− 1 where A is the calculated objective value from the assignment.155

Finally, we may also delete derived constraints, under certain conditions. This will lower156

the amount of memory required to verify the proof, as well as potentially speeding up157

verification of RUP and strengthening steps. For soundness reasons, there are restrictions on158

when constraints may be deleted (e.g. to prevent us from deleting every constraint in the159

input and then claiming an optimal solution with zero cost) [4], but for the techniques used160

in this paper, the verifier will allow us to delete any constraint we introduce, as well as any161

extension variable by deleting its two defining constraints.162

2.3 A Framework for Proofs for Backtracking Search163

For a very simple backtracking search algorithm, a proof could consist of a RUP statement164

for every backtrack, asserting that at least one of the guessed assignments must be false.165

Alternatively, if we are using conflict-driven clause learning (CDCL), a proof consists of a166

RUP step for every learned clause in turn. This applies to proofs using either DRAT or167

VeriPB. However, this is only possible if every fact used by the search algorithm follows168

by integer bounds consistency on the PB representation of the problem (or, for DRAT ,169

from unit propagation on the CNF representation). This would suffice, e.g. for conventional170

DPLL or CDCL SAT solvers, but does not work if we have stronger propagation or inference171

algorithms such as domain-consistent all-different. In this case, it is necessary to help the172

proof checker by interleaving additional steps within the proof [17]. The nature of these173

steps depends upon the inference being performed, and can involve additional RUP steps174

or (in VeriPB proofs only) explicit cutting planes steps. The aim here is to ensure that175

any fact “known” to the solving algorithm is also visible to the proof checker under unit176

propagation. Crucially, using PB proofs does not mean that the solving algorithm is in any177

E. Demirović et al 5

way a PB solver, nor does it need to employ any cutting planes reasoning to be able to write178

cutting planes proof steps. Instead, most solvers that write VeriPB proofs are conventional179

algorithms that have subsequently been augmented with, effectively, template-based print180

statements.181

Although variations on this technique are suitable for various forms of backtracking search,182

including with backjumping and restarts, this framework does not extend to being able to183

cover dynamic programming algorithms, which have a very different notion of a search space.184

The remainder of this paper explores a different framework, where the structure of VeriPB185

proofs represent how dynamic programming algorithms run.186

3 Proofs Involving States and Transitions187

The key idea we will use for the proofs in this paper is to introduce an extension variable188

for each entry in a dynamic programming matrix, or for each node in a memoised recursive189

search tree or a top-down decision diagram construction. Each of these extension variables190

will reify the conjunction of several other extension variables, representing different parts of191

the state. We will then build up implication constraints between these extension variables192

that reflect the way entries in the matrix are derived, the recursive call structure, or the edges193

in the decision diagram. We will additionally build up a series of at-least-one constraints,194

demonstrating that the structure we have created is complete. We finish by using the195

at-least-one constraint over the final row of the matrix, or the final non-terminal layer of the196

decision diagram, to prove the conclusion.197

So far, this idea is not unique to VeriPB proofs. The DRAT proof system also has198

an extension rule, and indeed Sinz and Biere [31], Jussila et al. [23] and Bryant [6] have199

constructed DRAT proofs for binary decision diagram solvers using extension variables in a200

similar but more restricted way. However, using VeriPB has many theoretical and practical201

benefits when we look at more complex problems. For example, counting problems like202

pigeonhole have direct proofs in VeriPB that scale trivially to arbitrarily large numbers of203

pigeons, and do not require decision diagram structures for some semblance of efficiency.204

Similarly, cutting planes allows us to work efficiently with reified integer linear inequalities205

without requiring complex and inefficient adder and multiplier circuits. VeriPB also supports206

optimisation problems, whereas the DRAT proof system only guarantees that satisfiable207

instances cannot be made unsatisfiable, and would not be sound if used for optimisation208

problems. Since we are looking to bring proof logging to a broader range of algorithms that209

solve problems far beyond the reach of SAT solving, we will work exclusively with VeriPB.210

3.1 Knapsack as a Dynamic Programming Problem211

We will first illustrate how to create proofs for simple 0/1 knapsack problems. We are given212

n items with weights wi and profits pi, and we want to maximise profit whilst not taking213

items with a combined weight more than some constant W . For simplicity, we assume that214

all weights and profits are non-negative integers. We can express this as the PB problem215

xi ∈ {0, 1} i ∈ {1, . . . , n} (1)216

minimise
n∑

i=1
−pixi (2)217

subject to
n∑

i=1
wixi ≤W , (3)218

6 Pseudo-Boolean Reasoning About States and Transitions

recalling the convention that PB problems have an objective function to be minimised rather219

than maximised. Note already that this PB representation is extremely straightforward, and220

does not involve constructing adder and multiplier circuits as it would if we used a CNF221

encoding.222

This problem has a recursive formulation. Letting P (i, w) be the maximum profit223

obtainable after taking the first i items whilst having weight w still available to use, we have224

the properties225

P (0, w) = 0 (4)226

P (i, w) = max{ (5)227

P (i− 1, w), (6)228

P (i− 1, w −wi) + pi if wi ≤ w}. (7)229

Here, Equation (4) gives the initial condition that there is zero profit from taking no230

items, regardless of weight; Equation (6) describes the option where we do not take item i;231

Equation (7) describes the option where we do take item i if we are allowed to; and the max232

operator in Equation (5) says that if we have two partial sums over the first i items both233

using weight W − w then we need only consider the one which gives us the better profit.234

This relation does not directly give us an algorithm. However, there are several stand-235

ard ways of turning such a recurrence relationship into an algorithm, including dynamic236

programming via a matrix built iteratively over weights; using recursion with memoisation;237

or constructing a decision diagram layer by layer from the root downwards [22, 32]. From238

an algorithm implementation perspective, the choice of methods can be very important;239

however, for proof logging, the approach we describe works equally well for all three methods.240

The important points are simply that241

1. the algorithm somehow avoids calculating the same partial sums twice;242

2. not all partial sums of weights and profits are necessarily calculated; and243

3. there is some way of handling “dominated” states, such as the maximum operation in244

Equation (5).245

For ease of explanation, and because it allows the widest range of techniques to be demon-246

strated, we will assume a layer-by-layer construction, starting by considering whether or not247

we take the first item, and then building this up to decide what combination of the first two248

items we will take, and then the first three items, and so on. Within layer i, we will consider249

every possible partial sum of the first i weights that does not already exceed our bound250

W , and associate that with the maximum possible partial sum of profits using exactly that251

weight. We call this information a state, no matter whether it is implemented as a node in a252

decision diagram, a memoised function call, or an entry in a matrix. We call partial sums of253

either weights or profits partial states, and view the full state as being the conjunction of254

partial weight and profit states.255

The idea behind our VeriPB proof is that we will introduce an extension variable Si
w,p256

for each state on layer i with partial sum of weights w and partial sum of profits p. For257

convenience, we will also introduce these variables for states that will be ignored due to the258

maximum rule. Recall that an extension variable is introduced by reifying a constraint; in259

our case, this constraint will be260

Si
w,p ⇔W i

w + P i
p ≥ 2 (8)261

E. Demirović et al 7

where W i
w and P i

p are themselves also extension variables,262

W i
w ⇔

i∑
j=1

wjxj ≥ w and (9)263

P i
p ⇔

i∑
j=1

pjxj ≤ p. (10)264

In other words, Si
w,p is defined to be true if and only if the sum of the taken weights for the265

first i items is at least w, and the sum of the taken profits for the first i items is at most p.266

The reason for this choice of inequalities will become evident when we look at the maximum267

rule.268

Merely introducing extension variables tells us nothing about which states could actually269

occur. The remainder of the proof consists of deriving implicational relationships between270

extension variables (which correspond to edges in a decision diagram), and then in proving271

that each layer is complete (that is, that we have an extension variable for every possible272

state that has not been eliminated).273

The first set of implications that we derive correspond to deciding not to take item xi.274

We in turn derive275

W i−1
w ∧ xi ⇒W i

w using a cutting planes addition rule, and then (11)276

P i−1
p ∧ xi ⇒ P i

p similarly, and finally (12)277

Si−1
w,p ∧ xi ⇒ Si

w,p follows by RUP. (13)278

For the base case, the first part of the conjunction is trivially true and is instead omitted,279

whilst for subsequent layers we will already have created the earlier extension variables, either280

due to the algorithm’s layer-by-layer construction, or iteration, or recursion.281

Next, suppose we cannot take item i due to the partial sum of weights exceeding W282

(recalling that for simplicity, we are forbidding negative weights). If this is the case, we derive283

W i−1
w ⇒ xi using cutting planes and RUP, and then (14)284

Si−1
w,p ⇒ xi and (15)285

Si−1
w,p ⇒ Si

w,p both follow by RUP. (16)286

This cutting planes addition step is between the forward implication constraint defining W i−1
w ,287

and the constraint giving the bound on W that is part of the input axiom. Because none of288

the remaining weight coefficients are negative, a simple bounds consistency calculation shows289

that if we have used too much weight already by layer i then there is no way of assigning the290

remaining xi variables that will bring our weight sum back to be no more than W .291

Finally, suppose we can take item i. Letting w′ = w + wi and p′ = p + pi be our new292

weights and profits respectively, we instead derive293

W i−1
w ∧ xi ⇒W i

w′ using cutting planes, and (17)294

P i−1
p ∧ xi ⇒ P i

p′ similarly, then (18)295

Si−1
w,p ∧ xi ⇒ Si

w′,p′ follows by RUP, as does (19)296

Si−1
w,p ⇒ Si

w,p + Si
w′,p′ ≥ 1. (20)297

Until this point, we have been ignoring the maximum rule. If we have two states on the298

same layer with the same w, and one with profit p and another with profit p′ > p, we will299

8 Pseudo-Boolean Reasoning About States and Transitions

derive that300

Si
w,p ⇒ Si

w,p′ . (21)301

What this implication means is, “if there is an assignment to the first i xi variables where the302

weight sums to at least w and the profit to no more than p, then there is an assignment where303

the weight sums to at least w and the profit sums to no more than some larger profit p′”. This304

is almost vacuous, and can easily be proved in cutting planes by unwrapping the conjunctions.305

In fact, in our proofs we can also do this for a distinct pair of states Si
w,p ⇒ Si

w′,p′ where306

w′ ≤ w and p′ ≥ p; this can be detected efficiently in a layer-by-layer algorithm, but not so307

easily with other approaches.308

Now we have described the relationship between states on the same and subsequent layers.309

The last part of the structure of our proof consists in deriving an at-least-one constraint over310

the final layer, asserting that our diagram is complete. Again, we make use of an inductive311

argument, by first deriving at-least-one constraints over the first layer, then the second layer,312

and so on. This is a simple sequence of resolution steps: given313 ∑
(w,p) on layer i−1

Si−1
w,p ≥ 1 (22)314

we may resolve every variable on315

Si−1
w,p ⇒ Si

w,p from Equation (16), or316

Si−1
w,p ⇒ Si

w,p + Si
w′,p′ ≥ 1 from Equation (20)317

to derive the desired318 ∑
(w,p) on layer i

Si
w,p ≥ 1. (23)319

This sets us up to provide a conclusion for our proof. Our algorithm execution will have320

solved the problem at this point, so we know an optimal assignment with profit P ⋆ that321

we can use to obtain a solution-improving constraint
∑

i−pixi ≤ −P ⋆ − 1. This in turn322

contradicts each component of Equation (23), showing unsatisfiability.323

To bring this together, we illustrate one way of implementing a proof-logging knapsack324

solving algorithm in Algorithm 1. We stress, however, that the techniques we have described325

are not in any way tied to this particular algorithm design. In particular, the same proof326

framework can be used for matrix-based dynamic programming where each weight is con-327

sidered in turn, as well as for recursion with memoisation. For a matrix, more states will be328

created, both in the solving algorithm and in the proof, whilst for recursion the states will be329

constructed in an order corresponding to the recursive search execution, rather than layer by330

layer. Similarly, although we chose to apply (a more general version of) the maximum rule as331

a single pass at the end of constructing each layer, we could instead derive the appropriate332

implication whenever the maximum rule is used.333

Until this point, we have not discussed deletions. To save memory, matrix and decision334

diagram approaches to dynamic programming sometimes need only keep the current and335

previous layers (or columns). We can do this in our proof too: when we start building layer336

i ≥ 3, we can tell the proof verifier that we promise we will no longer need to access any337

constraint and extension variable defined in layer i− 2, and so these constraints may now be338

deleted. This will help the proof verifier use less memory, and can also speed up verification—339

proof steps using RUP or that introduce extension variables are not, strictly speaking, of340

E. Demirović et al 9

Algorithm 1 One way of solving the knapsack problem, with proof logging, using a layer-by-layer
decision diagram style construction.

S0 ← {S0
0,0}

for i← 1 . . . n do // i.e. for each layer in turn
for all Si

w,p ∈ Si−1 do // i.e. for each state in the previous layer
Extend W i

w ⇔
∑i

j=1 wjxj ≥ w, P i
p ⇔

∑i
j=1 pjxj ≤ p, and then

Si
w,p ⇔W i

w ∧ P i
p if they do not already exist

// Consider not taking item i

Si ← Si ∪ {Si
w,p}

Derive W i−1
w ∧ xi ⇒W i

w and P i−1
p ∧ xi ⇒ P i

p by cutting planes addition, then
Si−1

w,p ∧ xi ⇒ Si
w,p by RUP

// Now see whether we could take item i

if w + wi > W then // We cannot take item i

Derive W i−1
w ⇒ xi by addition, then Si−1 ⇒ xi and Si−1

w,p ⇒ Si
w,p by RUP

else // We could take item i

Let (w′, p′) = (w + wi, p + pi)
Extend W i

w′ ⇔
∑i

j=1 wjxj ≥ w′, P i
p′ ⇔

∑i
j=1 pjxj ≤ p′, and then

Si
w′,p′ ⇔W i

w′ ∧ P i
p′ if they do not already exist

Si ← Si ∪ {Si
w′,p′}

Derive W i−1
w ∧ xi ⇒W i

w′ and P i−1
p ∧ xi ⇒ P i

p′ by addition, then
Si−1

w,p ∧ xi ⇒ Si
w′,p′ and Si−1

w,p ⇒ Si
w,p ∨ Si

w′,p′ by RUP
for all Si

w,p ∈ Si that is dominated by some other Si
w′,p′ do

Derive Si
w,p ⇒ Si

w′,p′ by unwrapping
Si ← Si \ {Si

w,p}
Derive

∑
Si ≥ 1 by resolving on each variable in

∑
Si−1 ≥ 1

Delete every constraint created on layer Si−1

if Sn is empty then
Conclude infeasibility

else
Log how we obtain the state with the best profit
Derive that every Sn

w,p contradicts the solution-improving constraint
Conclude optimality

constant complexity to verify in the worst case; we return to this in Section 4. With this341

caveat aside, the proofs we have written are efficient, in that we write effectively only a342

constant amount of data in the proof for each computation carried out by the algorithm.343

3.2 A General Framework344

In the same way that interleaving inference and backtrack constraints gives a general345

framework for proof logging for backtracking search algorithms, we are now in a position to346

describe how to generate proofs for dynamic programming and decision diagram algorithms.347

For a given problem and solving algorithm, we need to be able to do seven things.348

1. Represent the problem as a set of PB inequalities and a PB objective to minimise.349

2. Generate an extension variable for each new state, as it is encountered (whether that state350

is a node, a matrix entry, or a memoised recursive call). This is also done for infeasible351

states.352

10 Pseudo-Boolean Reasoning About States and Transitions

3. Generate an implication constraint S′ ∧ c⇒ S linking each new state S to its predecessor353

S′, showing that if we were in state S′ and we choose a given condition c, then we arrive354

at this new state.355

4. For any state S that is infeasible, generate a proof S ⇒ ⊥ that being in this state implies356

contradiction. (In practice, this can sometimes be combined into the previous step instead,357

as we did in Equation (16).)358

5. For any state S that is dominated, subsumed, or similar by a better state S′, generate a359

proof that S ⇒ S′.360

6. Show that we have considered every feasible state on a layer, or generated a complete361

column in a matrix, by creating an at-least-one constraint over the extension variables.362

7. Derive a conclusion using the at-least-one constraint over the final layer or column.363

The first requirement is generally straightforward, since the representation only needs to364

be correct, not useful for solving purposes. However, note that this means that our starting365

point is a problem, not an algorithm or a recurrence relation for solving that problem: we366

are certifying solutions that are found using dynamic programming, rather than specifically367

certifying the execution of a dynamic program. Ideally, this representation step should368

generally be carried out independently of how we then decide to go on and find a solution.369

For the second requirement, we need to ask what kinds of state can be represented using370

extension variables in a VeriPB proof. For knapsack, the states represented a conjunction of371

pseudo-Boolean inequalities. However, this technique is much more general. For example,372

Bergman et al. [2] give an example of a decision diagram solver where states represent sets of373

vertices from a graph: these can be represented as conjunctions of Boolean variables, using a374

pair of reified inequalities to express a reified equality constraint. Similarly, we can reuse375

the encoding described by Gocht et al. [17] to represent anything that could be described in376

constraint programming terms using integer variables. It is not so obvious how to represent377

rational or real numbers in VeriPB, although in some circumstances these could be handled378

by scaling.379

For the third requirement, if our conditions and states correspond cleanly to sets of380

Boolean variables then this is trivial: we are simply extending a set of inequalities by adding381

in additional fixed variables. For the fourth requirement, this may also be trivial, or we may382

need to reuse the constraint programming techniques of Gocht et al. [17] to show that a383

given partial state is infeasible. The sixth requirement needs only that we can show that384

we have indeed considered every possibility moving between layers or columns—for Boolean385

variables, this is immediate, whilst for encoded integer variables we can make use of the386

at-least-one constraint over each option. The seventh requirement comes down to showing387

that, given an optimal full state S and a suboptimal full state S′, S′ does not beat S—this388

should follow naturally from the objective function. For each of these requirements, we rely389

heavily upon the ability to cleanly wrap and unwrap reified constraints, and to reason as if390

reifications were not present using the technique described in Theorem 1 in the appendix.391

It is worth stressing that these properties, and the resulting ease of producing this kind of392

proof, are a specific characteristic of extended cutting planes, and they do not hold for many393

other proof systems.394

This leaves the fifth requirement, being able to reason about dominated states. This395

potentially requires more creativity—and this should not be surprising, since alongside396

tracking states, merging states is the other feature which distinguishes dynamic programming397

style algorithms from backtracking search. Fortunately, the VeriPB proof system provides us398

with a suite of tools for these scenarios. In many cases, fusion resolution under implications399

(which, given s∧r ⇒
∑

i aixi ≥ A and s∧r ⇒
∑

i aixi ≥ A′ lets us infer that s⇒
∑

i aixi ≥400

E. Demirović et al 11

min(A, A′) by resolving away the r) is sufficient, but VeriPB’s strengthening rule also allows401

sophisticated symmetry and dominance arguments [4].402

At least so long as we are working with Booleans and integers, we have found this403

framework to be powerful enough for a wide range of problems. For example, weighted404

interval scheduling problems [25] have a natural recursive formulation using a maximum405

operation and sums, and dynamic programming gives a polynomial time solving algorithm.406

Proof logging for this problem is simpler than knapsack: the states are a simple sum, rather407

than a conjunction of sums.408

Or, suppose we want to find the longest path in a directed acyclic graph. This also has409

a simple dynamic programming formulation, where nodes are visited in topological order.410

The longest path ending at a given node is then calculated by looking at each predecessor411

node and adding its longest path cost to the cost of its edge to our given node, and taking412

the maximum of these costs. In this case, our proof would use the costs as state variables,413

and rather than having two options at each transition, would be selecting between one414

option per incoming edge on the node. Note also that the proof process implicitly checks the415

correctness of the topological sort: if either the implementation were faulty, or the concept416

mathematically flawed (e.g. if we tried to do this in a graph with cycles), then the proof417

process would fail.418

Of course, this does not mean that we can provide efficient proof logging for every dynamic419

programming or decision diagram algorithm that might ever be invented, just as it would420

not be reasonable to claim that efficient proof logging is definitely possible for every single421

backtracking search algorithm—for example, we do not yet know whether it is practically422

feasible to reason about real or floating point numbers in VeriPB. Nor does this automate423

the process of adding proof logging to a solver. However, in the same way that the framework424

of interleaving RUP backtracking steps with explicit derivations for reasoning has vastly425

simplified adding proof logging to a wide range of search algorithms, we can say that these426

techniques will vastly reduce the conceptual and implementation hurdles required to use427

proof logging for state- and transition-based algorithms.428

3.3 Knapsack as a Constraint429

We return now to knapsack, but in a more general setting. As well as being an interesting430

stand-alone problem, knapsack appears as a constraint in some constraint programming431

toolkits. Trick [34] describes a propagator for a single 0/1 integer linear inequality where the432

sum is a variable, whilst Fahle and Sellmann [11], Sellmann [30], Katriel et al. [24], Malitsky433

et al. [27], and Malitsky et al. [26] work on exactly two integer linear equalities that sum434

to two different variables, and do not restrict to 0/1 variables for the items. MiniZinc also435

defines the constraint this way [33], whilst XCSP3 [5] allows for more than two inequalities.436

In all cases, the multiplier vector(s) are integer constants—sometimes these are required to437

be non-negative.438

Propagators based upon Trick’s approach can achieve either bounds or domain consistency439

on the sum variables, as well as domain consistency on the item variables. This is done by440

building a decision diagram, and then, by working from the final layer and moving backwards,441

deleting any nodes and edges that do not lead to a feasible state; what remains is a diagram442

where every path from the first layer to the final layer corresponds to a solution to the443

constraint. Once this is built, on some layers there may only be edges corresponding to the444

layer’s item being accepted, or only edges corresponding to the layer’s item being rejected;445

in this case, the associated item variable is forced.446

Gocht et al. [17] described a framework for proof logging for constraint programming447

12 Pseudo-Boolean Reasoning About States and Transitions

solvers using VeriPB. This framework supports integer variables, and a number of global448

constraints, including integer linear inequalities. To add a new constraint propagator to449

this framework, we must have two things. Firstly, we must be able to express the semantics450

of the constraint in PB form—this is trivial, because integer linear inequalities are already451

supported. Secondly, we must have a way of justifying all reasoning that can be carried452

out by its propagator. This will follow a similar pattern to proof logging for a standalone453

knapsack solver, but with different states and a more complicated conclusion.454

For a standalone knapsack solver, recall that our states Si
w,p represented that the partial455

sum of the first i items has weight at least w, and profit at most p. For a constraint, we456

instead want to track states that have weight exactly w, and profit exactly p. To do this, we457

can introduce the four extension variables458

W↑i
w ⇔

i∑
j=1

wjxj ≥ w W↓i
w ⇔

i∑
j=1

wjxj ≤ w (24)459

P↑i
p ⇔

i∑
j=1

pjxj ≥ p P↓i
p ⇔

i∑
j=1

pjxj ≤ p (25)460

which allow us to define461

Si
w,p ⇔W↑i

w + W↓i
w + P↑i

p + P↓i
p ≥ 4. (26)462

When building the structure of the proof, there are five differences.463

1. We must construct implications for all four partial states, rather than just two.464

2. We must bear in mind that we might be inside a backtracking search, and so some of465

the information we have about variables might be conditional. Fortunately this is not466

a concern: recall that any RUP or cutting planes proof can trivially and efficiently be467

extended to operate under assumptions.468

3. We might be dealing with constraint programming variables whose domains are not469

0/1. This means there may be more than two edges coming out of a state. To derive470

the implications for partial sums, we follow Gocht et al.’s approach of introducing471

direct variables as required, and then we use an additional cutting planes multiplication472

operation. We must also take care when deriving the at-least-one constraint over each473

layer, because this relies upon exhaustively branching. Again, this is dealt with by Gocht474

et al.’s framework, which allows us to obtain an at-most-one constraint for any constraint475

programming variable’s values.476

4. We may now only merge states with exact matches on weights and profits. This is true477

both algorithmically and in proof terms—reassuringly, if we were to forget this condition478

when implementing the propagation algorithm, we would quickly find it impossible to479

construct the appropriate implication steps in the proof.480

5. We cannot delete intermediate layers as we go: we want to reason about the diagram as a481

whole, so it stands to reason that the structure of the diagram must remain in the proof.482

However, we can delete every intermediate constraint once the conclusions are derived.483

Rather than establishing a proof of optimality, a knapsack propagator’s proof aims to484

show lack of support for some variables’ values. By looking at the possible weights and485

profits on the final layer of the decision diagram, we can recognise that either some bounds486

or some specific values are unsupported by the constraint; we can derive these facts inside a487

proof by resolving over the at-least-one constraint on the final layer. This gives us either488

bounds or domain consistency on the sum variables, as we prefer.489

E. Demirović et al 13

The backwards pass, which shows lack of support on the item values, is also straightforward—490

since our propagation algorithm works backwards from the final layer, eliminating infeasible491

nodes, it is sufficient to use RUP steps to show that the corresponding states must be false.492

Once this has been done, eliminating values from item variables also follows by RUP. This493

closely resembles the steps used by McIlree and McCreesh [29] to generate proofs from494

propagations for the regular language membership constraint.495

4 Implementations and Evaluation496

Before presenting the results of our empirical evaluation, it is important to ask what the497

purpose of such an evaluation should be. Rather than trying to implement the world’s fastest498

dynamic programming algorithms or propagators, or even to tell you when to use these499

techniques, the main aim of this paper is to demonstrate that if you choose to use these500

techniques, then certifying correctness using pseudo-Boolean proof logging is viable. To501

show this, we have implemented1 stand-alone solvers for three problems: knapsack, longest502

path in a directed acyclic graph, and interval scheduling. For knapsack, we implemented503

both top-down and matrix-based algorithms, whilst for the other two problems we used504

only a matrix. With the aim of the paper in mind, our key measure of success from these505

implementations is that we were able to add proof logging to each solver simply by adding506

in statements to log information that was already present, without needing to extend or507

change the underlying algorithm. To validate our implementations, we tested them on a508

large number of randomly generated instances and were able to verify every proof produced.509

Our proofs in each case are generated efficiently, having cost and length roughly linear in510

the amount of work done by the solver. However, the constant factor slowdown needed to511

write these proofs to disk is potentially large. Creating a new entry in a dynamic programming512

table for a problem such as knapsack can be extremely fast, requiring only a few additions,513

comparisons, and memory accesses. However, to justify an entry and the transition leading514

to it, we need to write several lines of text to a file. For an efficiently implemented algorithm,515

this can easily lead to more than an order of magnitude slowdown. This is much worse than516

for, e.g. SAT solving, because a CDCL solver does much more computation per proof step517

than a simple knapsack algorithm.518

But what about proof verification time—is that also roughly linear in proof size? This519

turns out to be a more complex question. When using only explicit cutting planes derivations,520

we would expect the cost of verifying each proof step to depend only upon the number521

of operations. However, verifying reverse unit propagation or strengthening steps requires522

achieving bounds consistency over the active set of inequalities, which is not a constant-time523

operation. In the top line of Figure 1 we show the verification times required for 1,200524

randomly generated knapsack problem instances with between 10 and 250 items, with random525

weights and profits both between 1 and 10, and a maximum weight of between 50 and 1000,526

solved using the top-down approach. (These parameters were selected to give instances where527

dynamic programming is a good choice of solving technique, so that we can measure the528

scalability of proof verification: we are trying to challenge the proof verifier, not the solver.)529

We measure verification time as a function of the number of states plus transitions required530

to solve each instance, since this is in effect “the amount of work” the solver took to solve an531

instance. The fit line suggests that verification scales worse than linearly, but better than532

quadratically.533

1 https://doi.org/10.5281/zenodo.12574620

https://doi.org/10.5281/zenodo.12574620

14 Pseudo-Boolean Reasoning About States and Transitions

0
100
200
300
400
500
600
700
800
900

1000

3600000 100000 200000 300000

Ve
ri

fic
at

io
n

tim
e

(s
)

Number of states + transitions

Original proof
y = 1/31830 x1.34

Kernel proof
y = 1/922 x1.01

10

50

100

150

200

250

N
um

be
r

of
ite

m
s

in
in

st
an

ce

Figure 1 Verification times for knapsack problem instances with between 10 and 250 items (shown
using colour). The power law fit lines show the original proof and the rewritten kernel proof times,
plotted against the number of states plus transitions required to solve the instance.

Similarly to how DRAT proofs can be converted to LRAT proofs, VeriPB is able to rewrite534

proofs into a simplified “kernel format” that does not require any propagations to verify:535

reverse unit propagation steps are rewritten to cutting planes derivations, and strengthening536

rule applications are also given explicit cutting planes subproofs for each proof goal [15].537

Carrying out this simplification is not computationally more expensive than verifying the538

proof, and introduces only a small additional slowdown for outputting the rewritten proof to539

disk. In Figure 1 we also plot the time taken to verify these rewritten proofs, achieving the540

lower line. Now, the power law fit line suggests that verification time scales extremely close541

to linearly with proof size, with a verification rate of a little below a thousand states and542

transitions per second (which we expect to vary considerably based upon hardware and disk543

speeds). In principle, solvers could output these kernel proofs directly, avoiding the need for544

proof rewriting if an important concern is the initial proof verification time; however, this545

would require considerably more work from solver authors.546

Finally, we have also implemented the knapsack constraint inside the Glasgow Constraint547

Solver, using a top-down construction. Our implementation supports arbitrarily many548

simultaneous inequalities, and is not restricted to 0/1 variables. It achieves domain consistency549

on every variable. Again, we were able to do this without having to restrict or alter the550

underlying propagation algorithm: VeriPB proofs are powerful enough to conveniently express551

the reasoning we wanted to carry out, and we did not have to design an algorithm specifically552

to make proof logging possible. To validate the implementation, we used the same system as553

other constraints in the Glasgow Subgraph Solver, where curated and randomly generated554

test data is combined with proof checking inside a continuous integration framework; we555

have successfully verified thousands of proofs in this manner. In terms of performance, any556

measurements are extremely sensitive to disk write speeds and to details of implementation,557

to the extent that using shorter variable names inside proofs can have a significant effect558

upon running times. However, to give indicative figures, verifying knapsack propagation559

proofs is typically between twenty and fifty times more expensive than producing them; this560

is somewhat more expensive than for some other propagators [17, 29], likely due to the large561

number of extension variables used in the proofs.562

E. Demirović et al 15

5 Conclusion563

We have shown that the VeriPB proof system supports convenient and efficient proofs for a564

range of dynamic programming algorithms, and that it can do so regardless of whether the565

algorithms use a matrix, recursion and memoisation, or a top-down construction, and even566

when we are inside a dynamic programming propagator in a constraint programming toolkit.567

We saw that the cutting planes proof system makes it both natural and efficient to reason568

about reified linear inequalities, whilst extension variables give us the power to describe the569

logical relationships between states.570

The knapsack propagation example showed how different conclusions could be inferred,571

depending upon how states were represented: when solving the knapsack problem directly,572

we tracked less information, thus allowing more states to be merged, whilst for constraint573

propagation our states were more expressive. This example could be extended further, e.g.574

to relaxed and restricted decision diagrams, where we are allowed to violate some constraints575

and only achieve a lower or upper bound rather than an exact solution. In such a setting, our576

ability to compose proofs and to run proofs conditional upon assumptions or guesses would577

be very helpful, since modern decision diagram based solvers can construct many decision578

diagrams during the solving process.579

An interesting open question is how to extend this work to cover problems where we580

want to count solutions, rather than finding an optimal solution. Once a decision diagram581

or dynamic programming matrix has been constructed, solution counts are often easily582

accessible. However, this property does not immediately transfer through to proofs. In583

the same way that DRAT proofs can only be used to reason “without loss of satisfaction”,584

VeriPB proofs establish “without loss of optimality”. This means that solutions can be585

removed, so long it can be shown that another equally-good-or-better solution exists (for586

example, through symmetry or dominance breaking). We believe it is important to give587

solver authors the ability to write proofs that correspond precisely to the real-world problem588

being solved. As such, we would like to see an appropriate theoretical foundation that will589

allow solvers to produce proofs either for optimality reasoning or for counting, with only590

minimal changes that reflect the algorithmic differences needed in the two settings. We would591

also be interested to know whether VeriPB can reasonably be used to work with rational or592

real numbers, either by scaling or more advanced techniques.593

References594

1 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.595

Certified core-guided MaxSAT solving. In Brigitte Pientka and Cesare Tinelli, editors,596

Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction,597

Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science,598

pages 1–22. Springer, 2023. doi:10.1007/978-3-031-38499-8_1.599

2 David Bergman, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat,600

and Willem Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In601

Helmut Simonis, editor, Integration of AI and OR Techniques in Constraint Programming -602

11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,603

volume 8451 of Lecture Notes in Computer Science, pages 351–367. Springer, 2014. doi:604

10.1007/978-3-319-07046-9_25.605

3 David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N. Hooker. Decision606

Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms.607

Springer, 2016. doi:10.1007/978-3-319-42849-9.608

https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-42849-9

16 Pseudo-Boolean Reasoning About States and Transitions

4 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance609

and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,610

2023. doi:10.1613/JAIR.1.14296.611

5 Frédéric Boussemart, Christophe Lecoutre, and Cédric Piette. XCSP3: an integrated format612

for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. URL:613

http://arxiv.org/abs/1611.03398, arXiv:1611.03398.614

6 Randal E. Bryant. Tbuddy: A proof-generating BDD package. In Alberto Griggio and615

Neha Rungta, editors, 22nd Formal Methods in Computer-Aided Design, FMCAD 2022,616

Trento, Italy, October 17-21, 2022, pages 49–58. IEEE, 2022. doi:10.34727/2022/ISBN.617

978-3-85448-053-2_10.618

7 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,619

Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,620

volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.621

IOS Press, 2nd edition, February 2021.622

8 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming623

results. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming and624

Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,625

Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,626

pages 148–160. Springer, 2017. doi:10.1007/978-3-319-59250-3_13.627

9 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds628

consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint629

Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages630

49–58, 2006.631

10 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-632

Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction633

- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,634

August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages635

220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.636

11 Torsten Fahle and Meinolf Sellmann. Cost based filtering for the constrained knapsack problem.637

Ann. Oper. Res., 115(1-4):73–93, 2002. doi:10.1023/A:1021193019522.638

12 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International639

Symposium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida,640

USA, January 2-4, 2008, 2008.641

13 Stephan Gocht. Certifying Correctness for Combinatorial Algorithms: by Using Pseudo-Boolean642

Reasoning. PhD thesis, Lund University, Sweden, 2022.643

14 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and644

James Trimble. Certifying solvers for clique and maximum common (connected) subgraph645

problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -646

26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,647

Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,648

2020. doi:10.1007/978-3-030-58475-7_20.649

15 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and650

Yong Kiam Tan. End-to-end verification for subgraph solving. In Michael J. Wooldridge,651

Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial652

Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intel-653

ligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,654

EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 8038–8047. AAAI Press, 2024.655

URL: https://doi.org/10.1609/aaai.v38i8.28642, doi:10.1609/AAAI.V38I8.28642.656

16 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets657

cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of658

the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages659

1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.660

https://doi.org/10.1613/JAIR.1.14296
http://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1023/A:1021193019522
https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1609/aaai.v38i8.28642
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.24963/ijcai.2020/158

E. Demirović et al 17

17 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming661

solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice662

of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume663

235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.664

doi:10.4230/LIPICS.CP.2022.25.665

18 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-666

boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-667

Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh668

Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,669

February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. doi:10.1609/AAAI.V35I5.16494.670

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal671

proofs. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,672

October 20-23, 2013, pages 181–188. IEEE, 2013.673

20 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-674

ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th675

International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.676

Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,677

2013. doi:10.1007/978-3-642-38574-2_24.678

21 John N. Hooker. Generalized resolution for 0-1 linear inequalities. Ann. Math. Artif. Intell.,679

6(1-3):271–286, 1992. doi:10.1007/BF01531033.680

22 John N. Hooker. Decision diagrams and dynamic programming. In Carla P. Gomes and681

Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Programming682

for Combinatorial Optimization Problems, 10th International Conference, CPAIOR 2013,683

Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes in684

Computer Science, pages 94–110. Springer, 2013. doi:10.1007/978-3-642-38171-3_7.685

23 Toni Jussila, Carsten Sinz, and Armin Biere. Extended resolution proofs for symbolic686

SAT solving with quantification. In Armin Biere and Carla P. Gomes, editors, Theory and687

Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,688

USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,689

pages 54–60. Springer, 2006. doi:10.1007/11814948_8.690

24 Irit Katriel, Meinolf Sellmann, Eli Upfal, and Pascal Van Hentenryck. Propagating knapsack691

constraints in sublinear time. In Proceedings of the Twenty-Second AAAI Conference on692

Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 231–236.693

AAAI Press, 2007.694

25 Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and Frits C.R. Spieksma.695

Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.696

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.20231, arXiv:https://697

onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20231, doi:10.1002/nav.20231.698

26 Yuri Malitsky, Meinolf Sellmann, and Radoslaw Szymanek. Filtering bounded knapsack699

constraints in expected sublinear time. In Maria Fox and David Poole, editors, Proceedings of700

the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,701

USA, July 11-15, 2010, pages 141–146. AAAI Press, 2010. doi:10.1609/AAAI.V24I1.7560.702

27 Yuri Malitsky, Meinolf Sellmann, and Willem Jan van Hoeve. Length-lex bounds consistency703

for knapsack constraints. In Peter J. Stuckey, editor, Principles and Practice of Constraint704

Programming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18,705

2008. Proceedings, volume 5202 of Lecture Notes in Computer Science, pages 266–281. Springer,706

2008. doi:10.1007/978-3-540-85958-1_18.707

28 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-708

gorithms. Comput. Sci. Rev., 5(2):119–161, 2011.709

29 Matthew J. McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints.710

In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of711

Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of712

https://doi.org/10.4230/LIPICS.CP.2022.25
https://doi.org/10.1609/AAAI.V35I5.16494
https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/BF01531033
https://doi.org/10.1007/978-3-642-38171-3_7
https://doi.org/10.1007/11814948_8
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.20231
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20231
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20231
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20231
https://doi.org/10.1002/nav.20231
https://doi.org/10.1609/AAAI.V24I1.7560
https://doi.org/10.1007/978-3-540-85958-1_18

18 Pseudo-Boolean Reasoning About States and Transitions

LIPIcs, pages 26:1–26:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:713

10.4230/LIPICS.CP.2023.26.714

30 Meinolf Sellmann. Approximated consistency for knapsack constraints. In Francesca Rossi,715

editor, Principles and Practice of Constraint Programming - CP 2003, 9th International716

Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume717

2833 of Lecture Notes in Computer Science, pages 679–693. Springer, 2003. doi:10.1007/718

978-3-540-45193-8_46.719

31 Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining bdds. In Dima720

Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and721

Applications, First International Symposium on Computer Science in Russia, CSR 2006, St.722

Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer723

Science, pages 600–611. Springer, 2006. doi:10.1007/11753728_60.724

32 Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science.725

Springer, 2020. doi:10.1007/978-3-030-54256-6.726

33 Peter J. Stuckey, Kim Marriott, and Guido Tack. The MiniZinc handbook section 4.2.1: Global727

constraints, 2023. URL: https://www.minizinc.org/doc-2.5.3/en/lib-globals.html.728

34 Michael A. Trick. A dynamic programming approach for consistency and propagation for729

knapsack constraints. Ann. Oper. Res., 118(1-4):73–84, 2003. doi:10.1023/A:1021801522545.730

35 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and731

trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory732

and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held733

as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.734

Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,735

2014. doi:10.1007/978-3-319-09284-3_31.736

A Proofs Under Implications737

In various pseudo-Boolean (PB) proof logging projects, it has been useful to rely on the738

assumption that if we have an efficient proof procedure for deriving a constraint D from a739

set of constraints F , then we can convert this into an efficient procedure for deriving R⇒ D740

from the set of constraints {R ⇒ C : C ∈ F} for some conjunction of literals R. In this741

appendix we formalise and generalise this property, showing that efficient cutting-planes742

proofs can be “unrestricted” to construct analogous efficient proofs where the premises and743

conclusion are subject to (potentially different) conditions using reification.744

A.1 Notation745

A (partial) assignment is a (partial) function from variables to {0, 1}; we extend an assign-746

ment ρ from variables to literals in the natural way by respecting the meaning of negation,747

and for literals ℓ over variables x not in the domain of ρ, denoted x ̸∈ dom(ρ), we use the748

convention ρ(ℓ) = ℓ. For notational convenience, we can also view ρ as the set of literals749

{ℓ : ρ(ℓ) = 1} assigned true by ρ. Applying ρ to a constraint C =
∑

i aiℓi ≥ K yields750

C↾ρ
.=

∑
ℓi:ρ(ℓi)=ℓi

aiℓi ≥ K −
∑

ℓj∈ρ(ℓj)=1

aj (27)751

substituting literals as specified by ρ. We extend this notation to applying assignments to F752

in the natural way F↾ρ =
⋃

C∈F C↾ρ.753

We will write Vars(C), Vars(F), Lits(C) and Lits(F) to denote the sets of variables or754

literals appearing in a PB constraint C or formula F .755

https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/11753728_60
https://doi.org/10.1007/978-3-030-54256-6
https://www.minizinc.org/doc-2.5.3/en/lib-globals.html
https://doi.org/10.1023/A:1021801522545
https://doi.org/10.1007/978-3-319-09284-3_31

E. Demirović et al 19

A.2 Constructing Proofs Under Implications756

We can now state our main result in its general form.757

▶ Theorem 1. Let F be a PB formula over n variables, ρ be a partial assignment, and suppose758

that from F↾ρ we can derive a constraint D using a cutting planes and RUP derivation of759

length L. Then we can construct a derivation of length O(n · L) from F of the constraint760 ∧
ℓ∈ρ

ℓ⇒ D. (28)761

In what follows, we assume all constraints are normalised. We will first show the following.762

▶ Lemma 2. For any PB constraint C and partial assignment ρ, we can always derive763 ∧
ℓ∈ρ ℓ⇒ C↾ρ from C using a cutting planes derivation of length O(|Vars(C)|).764

Proof. First, let us write C as765 ∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi +
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bjℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=ℓ

ckℓk ≥ K. (29)766

Then, if we let B =
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bj , we note that C↾ρ is the constraint767

∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi ≥ K −B (30)768

and
∧

ℓ∈ρ ℓ⇒ C↾ρ is the constraint769 ∑
ℓj∈Lits(C) :

ρ(ℓj)=1

(K −B)ℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=0

(K −B)ℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (31)770

To derive Equation (31) from Equation (29) we can proceed as follows.771

1. For all j, add the literal axioms amounting to bjℓj ≥ 0 to Equation (29) yielding772 ∑
ℓk∈Lits(C) :

ρ(ℓk)=ℓ

ckℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (32)773

2. Saturate to ensure that for all k, ck ≤ K −B.774

3. Add literal axioms ℓk ≥ 0 and ℓj ≥ 0 as needed to obtain Equation (31).775

This amounts to at most one weakening step per variable appearing in C, along with one776

saturation step, and hence has length O(|Vars(C)|). ◀777

We are now able to prove the main result.778

Proof. Let π = (D1, . . . , DL = D) be the derivation of D from F↾ρ, and denote by πs the779

set {D1, . . . , Ds−1} of constraints prior to derivation step s. Each Ds is one of the following:780

An axiom (constraint in F↾ρ).781

A literal axiom.782

The result of a cutting planes operation, with antecedents in πs.783

A RUP constraint with respect to F↾ρ ∪ πs.784

20 Pseudo-Boolean Reasoning About States and Transitions

We will proceed by structural induction on π and show that for any Ds we can construct a785

length O(n · s) derivation that
∧

ℓ∈ρ ℓ⇒ Ds from F .786

For the base cases, we consider an axiom Da ∈ F↾ρ. We must have some constraint787

C ∈ F such that C↾ρ = Da. Hence we can derive C as an axiom, and then by Lemma 2 we788

can derive
∧

ℓ∈ρ ℓ⇒ C↾ρ, i.e.
∧

ℓ∈ρ ℓ⇒ Da, in O(|Vars(C)|) ⊆ O(n) steps. Note that if Da789

is instead a literal axiom then
∧

ℓ∈ρ ℓ⇒ Da is also a literal axiom, because the reification790

coefficients will all be zero.791

Now assume for any non-axiom constraint Ds we have already constructed a derivation792

of length O(n · (s − 1)) deriving all the constraints in π′
s =

{∧
ℓ∈ρ ℓ ⇒ Di : Di ∈ πs

}
. We793

now consider different cases depending on how Ds was derived in π.794

Case 1: Ds is the result of adding two constraints Di, Dj ∈ πs.795

Then by assumption
∧

ℓ∈ρ ℓ⇒ Di, and
∧

ℓ∈ρ ℓ⇒ Dj have already been derived. If we let796

Ki and Kj be the degrees of Di and Dj respectively, we can write these in the form797 ∑
ℓ∈ρ

Kiℓ̄ + Di (33)798

and799 ∑
ℓ∈ρ

Kj ℓ̄ + Dj , (34)800

and so adding these together yields801 ∑
ℓ∈ρ

(Ki + Kj)ℓ̄ + Ds. (35)802

If Ks is the degree of Ds, note that we must have Ks ≤ Ki + Kj , since cancellation of803

matching literals when adding Di and Dj can only reduce the degree of their sum. Hence804

if we apply saturation to Equation (35) we obtain
∑

ℓ∈ρ Ksℓ + Ds, i.e.
∧

ℓ∈ρ ℓ⇒ Ds, as805

required.806

Case 2: Ds is result of multiplying a constraint Di ∈ πs by a scalar λ.807

Then by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and again we can write this808

as809 ∑
ℓ∈ρ

Kiℓ̄ + Di (36)810

where Ki is the degree of Ki. If we multiply this by λ we obtain811 ∑
ℓ∈ρ

λKiℓ̄ + λDi (37)812

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.813

Case 3: Ds is the result of dividing a constraint Di ∈ πs by a scalar λ.814

Then again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and this time we will815

write this in full as816 ∑
ℓ∈ρ

Kiℓ̄ +
∑

j

ajℓj ≥ Ki. (38)817

If we divide this by λ we obtain818 ∑
ℓ∈ρ

⌈(Ki/λ)⌉ℓ̄ +
∑

j

⌈aj/λ⌉ℓj ≥ ⌈(Ki/λ)⌉, (39)819

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.820

E. Demirović et al 21

Case 4: Ds is the result of applying saturation to a constraint Di ∈ πs.821

Once again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and we can write this822

in full as above in Equation (38). After applying saturation to this we obtain823 ∑
ℓ∈ρ

min(Ki, Ki)ℓ̄ +
∑

j

min(aj , Ki)ℓj ≥ Ki. (40)824

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.825

Case 5: Ds is the result of applying weakening (adding literal axioms) to a constraint826

Di ∈ πs.827

In this case we can view the added literal axioms as another degree-0 constraint Dj , which828

we can always derive, and so the fact we can obtain
∧

ℓ∈ρ ℓ⇒ Ds follows immediately829

from Case 1.830

Case 6: Ds is a RUP constraint.831

Write Ds =
∑

i aiℓi ≥ K and let A =
∑

i ai. Then
∧

ℓ∈ρ ℓ⇒ Ds is the constraint832 ∑
ℓ∈ρ

Kℓ̄ +
∑

i

aiℓi ≥ K, (41)833

and its negation is834 ∑
ℓ∈ρ

Kℓ +
∑

i

aiℓi ≥ A + 1 + (|ρ| − 1)K. (42)835

We can see that for Equation (42) to be satisfied, all the reification literals ℓ ∈ ρ must be836

set to true. Recalling that all constraints in π′
s =

{∧
ℓ∈ρ ℓ⇒ Di : Di ∈ πs

}
are all assumed837

to have been previously derived, we can see that performing unit propagation will reduce838

constraints in F ∪ π′
s ∪ ¬(

∧
ℓ∈ρ ℓ⇒ D) to be precisely the constraints in F↾ρ ∪ πs ∪ ¬D.839

Since by assumption deriving Ds from F↾ρ ∪ πs by RUP was a legitimate derivation step,840

continued unit propagation on the constraint database must result in a contradiction.841

Hence we can derive
∧

ℓ∈ρ ℓ⇒ D from F ∪ π′
s as a single RUP step.842

In all of these cases, we only need a constant number (at most two) proof steps, to843

derive
∧

ℓ∈ρ ℓ⇒ Ds, from what was assumed to already be derived, and so by starting from844

the axioms and applying induction we can construct a derivation which includes all of the845

constraints in π′
L =

{∧
ℓ∈ρ ℓ⇒ Di : Di ∈ π

}
and in particular our desired

∧
ℓ∈ρ ℓ⇒ DL.846

Since each of the L constraints in π′
L requires at most O(n) intermediate derivation steps,847

our constructed derivation has length at most O(n · L). ◀848

With Theorem 1 established we easily obtain the following useful corollary.849

▶ Corollary 3. Let F be a PB formula over n variables and let R be a set of literals over850

distinct variables not appearing in F (i.e. for any ℓ ∈ R, ℓ /∈ R and ℓ /∈ Lits(F)). Then let851

R(F) be a set of reified constraints {RC ⇒ C : C ∈ F}, where each reifying term RC is a852

conjunction of literals in R.853

Then, if we can derive a constraint D from F using a cutting planes and RUP derivation854

of length L, we can construct a derivation of length O(L ·n) of the constraint
∧

C∈F RC ⇒ D855

from R(F).856

Proof. Take the partial assignment ρ setting ℓ = 1 for each ℓ ∈ R and apply Theorem 1. ◀857

Finally, we conclude with a closer look at when the O(n ·L) worst case in Theorem 1 will858

actually occur.859

22 Pseudo-Boolean Reasoning About States and Transitions

▶ Observation 4. In practice, we can often consider the length of the constructed derivation860

in Theorem 1 to be O(L) rather than O(n · L). This is because the O(n) overhead occurs861

only in the base case when transforming an axiom from the initial formula to the required862

form by adding literal axioms (n in the worst case) and saturating as described in Lemma 2.863

We can achieve the same transformation in O(1) steps when a syntactic implication rule is864

implemented, as is the case for the VeriPB proof checker. This automatically checks that865

literal axioms can be added to a previously derived constraint to obtain a specified constraint.866

	1 Introduction
	2 Background
	2.1 Pseudo-Boolean Preliminaries
	2.2 The VeriPB Proof System
	2.3 A Framework for Proofs for Backtracking Search

	3 Proofs Involving States and Transitions
	3.1 Knapsack as a Dynamic Programming Problem
	3.2 A General Framework
	3.3 Knapsack as a Constraint

	4 Implementations and Evaluation
	5 Conclusion
	A Proofs Under Implications
	A.1 Notation
	A.2 Constructing Proofs Under Implications

