
Complications for Computational Experiments from1

Modern Processors∗
2

Johannes K. Fichte !3

TU Dresden, Germany4

Markus Hecher !5

TU Wien, Austria and University of Potsdam, Germany6

Ciaran McCreesh !7

University of Glasgow, Scotland, UK8

Anas Shahab !9

TU Dresden, Germany10

Abstract11

In this paper, we revisit the approach to empirical experiments for combinatorial solvers. We provide12

a brief survey on tools that can help to make empirical work easier. We illustrate origins of uncertainty13

in modern hardware and show how strong the influence of certain aspects of modern hardware and14

its experimental setup can be in an actual experimental evaluation. More specifically, there can be15

situations where (i) two different researchers run a reasonable-looking experiment comparing the16

same solvers and come to different conclusions and (ii) one researcher runs the same experiment17

twice on the same hardware and reaches different conclusions based upon how the hardware is18

configured and used. We investigate these situations from a hardware perspective. Furthermore, we19

provide an overview on standard measures, detailed explanations on effects, potential errors, and20

biased suggestions for useful tools. Alongside the tools, we discuss their feasibility as experiments21

often run on clusters to which the experimentalist has only limited access. Our work sheds light on22

a number of benchmarking-related issues which could be considered to be folklore or even myths.23
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1 Introduction33

“Why trust science?” is the title of a recent popular science book by Naomi Oreskes [74]. We34

can ask the same question of combinatorial sciences, algorithms, and evaluations: Why trust35

an empirical experiment? Roughly speaking, in science, we try to understand why things36

happen in the real world and investigate them with the help of scientific methods. One37

important aspect to make an empirical evaluation trustworthy is reproducibility. This topic38

has been the subject of much recent scrutiny, with some arguing there is a reproducibility39

crisis in areas fields of computer science [33, 31] and even a replicability crisis in other scientific40
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fields of research [81]. Luckily in combinatorial problem solving, replicability is often already41

indirectly addressed in public challenges, which many combinatorial solving communities42

organize in order to foster implementations and evaluations [47, 82, 80, 83, 86, 20, 21]. The43

challenges provide a place for empirical evaluations, feature shared benchmarks, and support44

long-term heritage [3, 17, 22, 54]. It is therefore often assumed that everything should be45

judged with respect to these benchmarks or latest solvers [5]. However, benchmarks featured46

in competitions are not necessarily robust [40, 49] and might bias towards existing solving47

approaches and heuristics. On that account, one can argue that non-competitive evaluations48

are quite helpful for papers that are orthogonal to classical improvements over one particular49

solving technique or algorithm [19, 30]. There, one can often see a strong focus on algorithm50

engineering and their evaluation [63], which might not always be desired from a theoretical51

perspective. In particular, it makes reproducibility far less obvious than one would expect from52

theory. While reproducibility initiatives are becoming fashionable [73, 59], aspects are often53

left out in practical algorithm engineering and when testing combinatorial implementations:54

(i) the test-setup is not given (no protocol) or error prone (no failure analysis/considerations),55

(ii) modern hardware is simplified to the von-Neumann model (Princeton architecture) [87]56

and considered deterministic, and (iii) underlying software is neglected.57

In this work, we summarize a list of topics to consider that might be folklore to an58

experienced engineer, but are often only mentioned between the lines while being crucial to59

actual reproducibility (Section 2.1). We include a list of system and environment parameters60

that are impactful when carrying out empirical work (Section 2.3). We summarize useful61

tools and list practical problems that repeatedly occur when experimenting (Sections 3.1,62

3.2, and 3.3). In the main part of our paper, we provide an initial list of issues caused by63

modern consumer hardware that can have a notable impact if setup and configurations are64

not carefully designed (Table 1). We show by example that one can achieve different results65

in the number of solved instances ranging from 5%–40% on the same hardware, depending66

on the setup (Experiment 1, Table 3). This could suggest that it is not always meaningful to67

only prefer solvers that beat the “best” solver, but to aim for clean benchmark settings and68

elaborate discussions that highlight both the solver’s advantages and disadvantages.69

Related Works. There are various works that address aspects of reproducibility [3, 7,70

8, 15, 16, 56, 79, 94, 98] and experimental design [39, 63, 71], including micro-benchmarking,71

which requires special attention in terms of statistical analysis [42], [71, Ch.8]. Previous72

works neglected effects of modern parallel hardware on experimenting and some aspects have73

only been addressed in the background by the community. We put attention on certain issues74

arising on modern machines, updating outdated assumptions on measures, and illustrating75

how certain problems can be omitted. In the sequel, we revisit some of these related works.76

2 Evaluating Combinatorial Algorithms77

Natural sciences have a long tradition in designing experiments (DOE). Practical experiments78

date back to the ancient Greek philosophers such as Thales and Anaximenes with empirically79

verifiable ideas. There, methodology is key and has a long tradition with formal approaches80

existing since the late 1920s [25, 26]. Methodology not only involves the experiment itself,81

but also observation, measurement, and the design of test aiming to reduce external influence.82

Already in 1995, Hooker [39] discussed challenges in competitive evaluations of heuristics. A83

variety of these challenges are still of relevance in today’s combinatorial solving community.84

In particular, emphasis on competitions tells which algorithms/implementations are better,85

but not why; this remains a particularly big challenge in the SAT community [27, 91]. If86

a novel implementation wins, it is accepted; otherwise, it is considered as failure, resulting87
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in a high incentive to find the best possible parameter settings. The challenge of designing88

an experiment (DOE) has meanwhile been addressed by a more experimental community89

in broad guides [63] or algorithm engineering works [71]. In contrast, theoretical computer90

scientists often neglect environmental considerations due to the assumption that modern91

hardware behaves similar to simplified mathematical machine models [90] or classical hardware92

models [93]. Unfortunately, this is no longer the case for modern architectures. There is a93

list of concepts and external influences that can interfere, some of which are discussed below.94

2.1 Repeatability, Replicability, and Reproducibility95

When conducting a study or experiment, a central goal is to reduce inconsistencies between96

theoretical descriptions and actual experiments. Three major principles play a central role:97

repeatability, replicability, and reproducibility. Unsurprisingly, these topics are also critically98

discussed in other scientific fields [65] and sometimes confused with each other.99

Repeatability requires repeating a computation by the same researcher with the same100

equipment at reliably the same result. The main purpose is often to estimate random101

errors inherent in any observation. When evaluating combinatorial solvers, repeatability102

translates to running the same solver with the same configuration on a given instance multiple103

times, maybe even on different hardware. Some publicly accessible evaluation platforms104

for combinatorial competitions address repeatability to a certain extent, as for example,105

StarExec [84] and Optil.io [94]. Effective tools to measure and control the execution of106

combinatorial solvers are runsolver [79] and BenchExec [7, 8].107

Replicability, sometimes also called method reproducibility, refers to the principle that if108

an experiment is replicated by independent researchers with access to the original artifacts109

and same methodology, that then outcomes are the same with high confidence. When110

evaluating combinatorial solvers, replicability translates to running the same solver with the111

same configuration and instance on a different system by independent researchers, which is112

sometimes also called recomputability. Relevant aspects relate to works such as the Heritage113

projects [3, 16, 15], which preserve access to old solvers and making sources accessible114

to a broad community, or Singularity, which aims for easy an setup on high-performance115

computing (HPC) systems with few prerequisites on the environment [56, 98]. Another116

initiative (Guix) aims for a dedicated Linux distribution that provides highly stable system117

dependency configurations [1, 96]. Already in 2013, the recomputation manifesto postulated118

that one can only build on previous work if it can properly be replicated as a first step [28].119

In addition, it makes research more efficient, similarly to how high quality publications120

can benefit other researchers. In contrast, some researchers argue that replicability is not121

worth considering, since sharing all artifacts is a non-trivial activity, which in consequence122

wastes efforts of the researchers [18]. Still, replicability is getting solid attention within the123

experimental algorithmics community [73], since it supports quality assurance.124

Reproducibility aims for being able to obtain the same outcome using artifacts, which125

independent researchers develop without help of the original authors. When evaluating126

combinatorial solvers reproducibility roughly refers to another group constructing a second127

solver that implements the same algorithmic ideas. For example, Knuth re-implemented SAT128

algorithms from several epochs [52]. More experimental directions are investigations into129

robustness of benchmark sets and their evaluation measures [49]. Reproducibility can also130

be interpreted fairly vaguely [32]. Interestingly, the literature on experimental setup [63] and131

algorithm engineering [71] already contains a variety of suggestions to obtain reproducibility.132

Repeatability and to some extent also replicability are the focus of our paper. Our aim133

is to make researchers aware of potential problems caused by modern computer systems,134
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illustrate how to detect and reduce them without spending hours of debugging or over-135

valuing small improvements. Before we go into details, we briefly discuss principles and136

tools that support both repeatability and replicability. Since recent works on reproducibility137

provide various helpful suggestions on replicability in terms of environment [75], we focus138

only on aspects that might degrade long-term repeatability and replicability, resulting in139

over-engineering or over-tooling. We argue in favour of reviving an old Unix philosophy:140

build simple, short, clear, modular, and extensible code [64] both for the actual solver as141

well as the evaluation. Always keep dependencies low and provide a statically linked binary142

along with your code [89, 60] or a simple virtual environment to reproduce dependencies if143

you use interpreted languages. Even if the source code does not compile with newer versions,144

binary compatibility is mostly maintained for decades. The primary focus of container-based145

solutions, such as Singularity [56], is current accessibility of scientific computing software146

that requires extensive libraries and complex environments. It is quite useful if the software147

is widely used, requires complicated setup on high performance computing environments, and148

is continuously maintained. Container-based solutions can also be useful for building source149

code on old operating systems [3]. However, they introduce additional dependencies, increase150

conceptual complexity, can have notable runtime overhead under certain conditions [100],151

require additional work for a proper setup (both hosts as well as containers), and increase152

chances that the software does not out run of the box in 3 years. A practical observation153

illustrates this quite well: already since 2010, a meta software (Vagrant) tries to wrap154

providers such as VirtualBox, Hyper-V, Docker, VMWare, or AWS. While virtualization can155

be tempting to use, chances are high that some of these providers upgrade functionality or156

disappear entirely resulting in useless migration efforts.157

2.2 An Experiment158

In the beginning of Section 2, we stated classical experimental viewpoints: fixed solver or159

fixed instance set. In contrast, we take a third perspective by fixing both the instance160

set and the solver and focus on differences in hardware configurations. Therefore, we turn161

our attention to a recent experiment on SAT solvers (time leap challenge) [22]. We repeat162

the experiment with the solver CaDiCal on other hardware to investigate side effects of163

experimental setup and hardware. Also, we use set-asp-gauss as instances, which contains164

200 publicly available SAT instances from a variety of domains with increasing practical165

hardness [40]1. We take a timeout of 900 seconds, but would like to point out that recent166

SAT competitions restrict the total runtime over all instances to 5,000 seconds. We run167

experiments on the following environments: Comet Lake (i7 Gen10): Intel i7-10710U168

4.7 GHz, Linux 5.4.0-72-generic, Ubuntu 20.04; Haswell (Xeon Gen4): 2x Intel Xeon169

E5-2680v3 CPUs, Linux 3.10.0-1062, RHEL 7.7; Rome (Zen2): 2x AMD EPYC 7702,170

Linux 3.10.0-1062, RHEL 7.7; and Skylake (Xeon Gen6): Xeon Silver 4112 CPU, Linux171

version 4.15.0-91, Mint 19. We explicitly include cheap mobile hardware by using a Comet172

Lake (i7 Gen10) CPU, since not every group can afford expensive server hardware or spend173

valuable research time on setting up stable experiments on a cluster.174

Table 1 illustrates the results of the experiment on varying hardware. Unsurprisingly, the175

modern hardware running at 4.7 GHz solves the most instances. Somewhat unexpected is176

that two potentially faster processors solve fewer instances. Namely, the Rome CPU which177

1 The benchmark set is available for download at https://www.cs.uni-potsdam.de/wv/projects/sets/
set-industrial-09-12-gauss.tar.xz

https://www.cs.uni-potsdam.de/wv/projects/sets/set-industrial-09-12-gauss.tar.xz
https://www.cs.uni-potsdam.de/wv/projects/sets/set-industrial-09-12-gauss.tar.xz
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Processor (CPU) f p s(15) t[h]

Skylake 3.0 1 190 5.12
Haswell 3.3 1 189 3.89
Rome 3.4 1 190 3.79
Comet Lake 4.7 1 191 3.81
Comet Lake 4.7 6 189 6.13
Comet Lake 4.7 12 176 7.18

Table 1 Number of solved instances out of 200 SAT instances running the solver CaDiCal on
varying platforms. Column s(15) contains the number of solved instances when timeout is 15 minutes;
f and p refer to the CPU frequency in GHz and number of solvers running in parallel, respectively.
The t column contains the total runtime in hours for all instances solved within 15 minutes.

is faster than the Skylake CPU solves fewer instances and similarly the Haswell solves fewer178

instances than the Skylake. Since both processors are different generations one might expect179

that the AMD CPU is simply slower. While the 5% fewer solved instances might seem not180

much comparing the results to the ones of the time leap challenge, it would mean that a181

ten year old solver solves almost the same number of instances on a modern hardware as182

CaDiCal on very recent hardware. Below, we explain that this is clearly not the case and183

illustrate details of the experimental setup that contribute to the low number of solved184

instances. In contrast, when comparing the number of solved instances for the Comet Lake185

configurations, it is obvious to an experienced reader that while the Comet Lake CPU186

exposes 12 software cores, due to multithreading (MT) only 6 physical cores are available.187

Still, when using all physical cores, we have more than 30% higher runtime, which can be188

particularly problematic when comparing to settings that prefer total runtime as measure. To189

avoid this, we could simply not run solvers in parallel; however, this seems quite impractical190

and inefficient. In the following sections, we clear up which problems in the setup may have191

caused the differences and illustrate how to avoid such issues.192

2.3 Uncertainty on Modern Hardware193

Modern processors can do many calculations at the same time by using multiple cores on each194

processor and each core also has built-in a certain parallelism. While this can be exploited195

explicitly in terms of parallel programming frameworks, some features are already done by196

on-board circuits or firmware, which is a low level software layer between the CPU hardware197

and the operating system. Compile time optimizations such as automated parallel execution198

optimization and cache performance optimization [4] can then automatically employ specific199

features. For example, loop optimization tries to automatically rewrite loops in programs such200

that the loop can be executed in parallel on multiprocessor systems. Scheduling splits loops201

so that they can run concurrently on multiple processors. Vectorization optimizes for running202

many loop iterations on parallel hardware that supports single instruction multiple data203

(SIMD). Therefore, instead of processing a single element of a vector N times, m elements204

of a vector are processed simultaneously N/m times. In fact, modern CPUs have so-called205

vector instruction sets such as SSE, AVX, NEON, or SVE depending on the architecture,206

which makes them SIMD hardware. Loop vectorization can have a significant impact on207

the runtime due to effects on pipeline synchronization or data-movement timing. Usually,208

dependency analysis tries to optimize these operations. But depending on the compiler209

(GCC, Intel, or LLVM) different runtimes of the resulting binary can be observed [92].210

Processor specific features add to less pre-calculable behavior. Turbo Boost, which was211

introduced around 2008, allows to dynamically overclock the CPU if the operating system212
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requests the highest performance state of the processor [66]. Thermal design power (TDP),213

which was established around 2012, allows to scale the power (energy transfer rate) variably214

between 50W and 155W [70] to save energy depending on the system load. In particular, this215

is active on laptop systems that are not connected to an electrical outlet or if certain system216

sensors detect high temperature. Turbo Boost 2.0 was introduced around 2011 and it uses217

time windows with different levels of power limits, so that a processor can boost its frequency218

beyond its thermal design power, which can thus only be maintained for a few seconds without219

destroying the CPU [2]. Huge Pages, which were increased to 1GB, can reduce the overhead220

of virtual memory translations by using larger virtual memory page sizes which increases the221

effective size of caches in the memory pipeline [24]. Branch prediction, whose early forms222

already date back to the 1980s in SPARC or MIPS [68], speculates on the condition that223

most likely occurs if a conditional operation is run. Modern CPUs have a quite sophisticated224

branch prediction system, which executes potential operations in parallel [48]. The CPU225

can then complete an operation ahead of time if it made a good guess and significantly226

speed up the computation. This often depends on how frequently the same operation is used.227

Otherwise, if the branch predictor guessed wrong, the CPU executes the other branch of228

operation with some delay, which can be longer than expected as modern processors tend to229

have quite long pipelines so that the misprediction delay is between 10 and 20 clock cycles.230

The situation gets more complicated when substantial architectural bugs are mitigated or231

patched, as this can notably slow down the total system performance [58, 53].232

Clearly, we need practical empirical evaluations of algorithms and techniques and often-233

times it is not useful to just restrict an evaluation to existing benchmarks used in competitions,234

if they even exists. But just the “complications” or, more formally, source for an error in mea-235

surement mentioned above, could make the outcome of an experiment far less deterministic236

than one would expect. For that reason, we suggest a more rigorous process when evaluating237

implementations, including the understanding of measurements and effects of potential errors238

on the outcome as well as approaches to reduce unexpected and not entirely deterministic239

effects. In a way, the following sections provide a modern perspective on simple measures240

(runtime) that incorporate state-of-the-art in hardware and operating system technology.241

3 Measurements and Hardware Effects242

In the following, we discuss measurements used when evaluating runtime of empirical work.243

Along with the measures, we recap useful measuring and controlling tools. Since most of the244

tools are highly specific to the kernel in the used operating system, we restrict ourselves to245

recent versions of Linux and widely used distributions thereof.246

3.1 Runtime247

When evaluating algorithms, a central question is how long its implementation actually runs248

on the input data (runtime). There are five main measures that are interesting in this context:249

real-time, user-time, system-time, CPU-usage, and system load. The real-time, frequently250

just called wallclock time, measures the elapsed time between start and end of a considered251

program (method entry and exit). In contrast, CPU-time measures the actual amount of252

time for which a CPU was used when executing a program. More precisely, the user-time253

measures how much CPU-time was utilized and system-time how much the operating system254

has used the CPU-time due to system calls by the considered program. Both measures255

neglect waiting times for input/output (I/O) operations or entering a low-power mode due256

to energy saving or thermal reasons. There are more detailed time measures on time spent in257
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user/kernel space, idle, waiting for disk, handling interrupts, or waiting for external resources258

if the system runs on a hypervisor. CPU-usage considers the ratio of CPU-time to the259

CPU capacity as a percentage. It allows for estimating how busy a system is, to quantify260

how processors are shared between other programs. The system load indicates how many261

programs have been waiting for resources, e.g., a value of 0.05 means that 0.05 processes262

were waiting for resources. The system load is often given as load average which states the263

last average of a fixed period of time; by default, system tools report three time periods (1, 5,264

and 15 minutes). If the load average goes above the number of physical CPUs on the system,265

a program has to idle and wait for free resources on the CPU.266

Suggested Measure for Runtime. When measuring runtime, the obvious measure is267

to use elapsed time, so as to measure the real-time of a program. However, when setting268

an experiment, we aim to (i) reduce external influences, (ii) conduct reasonable failure269

analysis, or (iii) use an alternative measure in the worst-case. Real-time can be unreliable270

on sequential systems as a program can be influenced by other programs running on the271

system and the program competes on resources with the operating system. For that reason,272

dated guides on experimenting suggested to run a clean system and obtain a magic overhead273

factor, which follows Direction (ii) replacing an expected failure analysis. More recent guides,274

follow Direction (iii) and suggest to use CPU-time [63, 71], mainly arguing that real-time275

minus unwanted external interruption should roughly equal used CPU-time when evaluating276

sequential combinatorial solvers that use a CPU close to 100%. However, we believe that the277

best approach for an experimental setup is always to follow Direction (i) and reduce external278

influences. Suggestions on CPU-time are outdated as modern hardware is inherently parallel.279

Even small single-board computers such as the Raspberry Pi have multi-core processors.280

This allows to run programs and the operating system simply in parallel. Still, CPU-time281

might prove useful to estimate a degree of parallelism or debug unexpected behavior.282

Expected Errors. Real-time is measured by an internal clock of the computer. Nowa-283

days, hardware clocks are still not very accurate. Expected time drifts are about one second284

per day [95], which is often negligible for standard experiments as micro-benchmarking is285

anyways rarely meaningful. But, time drift can be far higher, for example, when system load286

is very high [72] and systems run within virtual machine guests [44, 6, 85]. Since modern287

cryptography still requires exact system times, all state-of-the-art operating systems synchro-288

nize the system clock frequently. Unfortunately, many widely used tools do not incorporate289

time drifts and corrections by time synchronization utilities. Thus, if time drifts are high290

(virtual machines) or a misconfiguration of the synchronization service occurs, measures291

can be completely unreliable. Note that we can expect difference between CPU-time and292

real-time in cases where heavy or slow access to storage occurs, slow network is involved, or293

unexpected parallel execution happens. However, this should be ground to investigate details294

and either eliminate problems in the experimental setup or update problematic program295

parts, if possible. A classical example occurs when using the ILP solver CPLEX, which sets by296

default a number of threads equal to the number of cores or 32 threads (whichever number297

is smaller). An issue, which can especially happen when measuring CPU-time, is due to the298

operating system and specific tooling. Namely, a program starts multiple processes, e.g., the299

program calls a SAT solver, but the monitoring tool captures only one process.300

Tools to Measure Runtime. A standard system tool is GNU time [50], which provides301

CPU-time, real-time, and CPU usage of an executed program when run with the command-302

line flag -v. Note that time refers to a function in the Linux shell whereas GNU time can be303

found at /usr/bin/time. GNU time suffers from issues with time skew. A compact, free, and304

open source tool with extended functionality is runsolver [79]. It can be easily compiled305
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and requires only few additional packages, but also suffers from issues with time skew. An306

extensive monitoring tool is perf, which is available in the linux kernel since version 2.6.31307

(2009) [101]. Perf provides statistical profiling of the entire system when run with flag stat.308

It is easy to use and well documented, but requires installation of an additional package,309

an additional kernel module, and setting kernel security parameters (perf_event_paranoid,310

nmi_watchdog) [55, 61]. However, perf is usually available on maintained HPC environments.311

Restricting Runtime. Oftentimes when running experiments, we are interested in312

setting an upper bound on the runtime, let the program run until this time, then terminate313

and measure how many inputs have been solved successfully. Classical tools to impose314

a timeout are timeout [11], prlimit [13], and ulimit (obsolete [88]). These tools use a315

kernel function (timer_create) to register a timer. The tools notify the considered program316

about the occurred timeout by sending a signal to terminate the program, but only to the317

started program that is responsible to handle potentially started children (entire process318

hierarchy). For that reason, these tools are often useless or require to build additional319

wrapper scripts when running academic code, which often omit proper signal handling. A320

popular tool in the research community that circumvents these problems is the already321

above mentioned tool Runsolver [79], which uses a sampling based approach. It monitors322

and terminates the entire hierarchy of processes started by the tested program. However,323

signals are sent to child processes first, which may need additional exception handling in the324

tested program. Furthermore, the sampling-based approach may cause measurable overhead325

in used resources. runexec is modern and thorough tool for imposing detailed runtime326

restrictions. It can be found within the larger framework for reliable benchmarking and327

resource measurement (BenchExec) [14]. runexec uses kernel control groups (cgroups) to328

limit resources [46, 36]. Cgroups are precise, but cause a certain overhead and are fairly quite329

hard to use manually. Unfortunately, BenchExec does not directly support commonly used330

schedulers in HPC environments (except AWS), requires administrative privileges during331

setup, specially configured privileges at runtime, and fairly new distributions and kernels. It332

is only widely available on Ubuntu or systems running kernels of version at least 5.11.333

Suggested Tooling. In principle, we find runexec quite helpful when restricting runtime.334

It is reliable and has very helpful features such as warning the user about unexpected335

high system loads. However, it has strong requirements, both in terms of privileges and336

dependencies, and can be hard to setup, especially in combination with existing cluster337

scheduling systems. GNU time and timeout are both system tools available out of the box.338

Though, when using timeout we require additional tools (e.g., pstree) and a bit of scripting339

to handle an entire process hierarchy. Still, both tools might be the best choice if only340

standard system resources are available and no libraries can be installed. For older systems341

that are well-maintained or where additional libraries can be installed, we suggest runsolver342

(enforcement) in combination with perf (measurement). Both tools keep setup and handling343

at a minimum. Issues on potential time-skew and sampling-based issues are minimized and344

more detailed statistics (memory) can be outputted if needed. However, using this tooling345

requires to check carefully if the system is over-committed or if runsolver terminated a346

program too late. If required kernel modules or security parameters for perf cannot be347

installed/set, runsolver in combination with GNU time can be a reasonable alternative.348

3.2 CPUs and Scaling349

Modern hardware has features to dynamically overclock the CPU, which then can run at350

high frequency for a short period of time (Turbo Boost). Frequency scaling can save energy351

(Thermal power design) when processes do not require full capabilities of the system. These352
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Processor fa fe p s(15) t[h]

Coppermine 0.5 0.5 1 98 8.93
Comet Lake 4.7 0.5 1 160 9.99
Comet Lake 4.7 ?0.8 1 174 9.09
Comet Lake 4.7 1.5 1 177 7.12
Comet Lake 4.7 2.0 1 189 5.13

Processor fa fe p s(15) t[h]

Haswell 3.3 ?2.5 1 189 3.89
Skylake 3.0 †3.0 1 190 5.12
Comet Lake 4.7 3.9 1 191 3.81
Rome 3.4 2.0 1 190 3.79

Table 2 Number of solved SAT instances running the solver CaDiCal on varying platforms.
Column s(x) contains the solved instances when the runtime is cut off after x minutes. fa, fe, and
p refer to the available and effective frequency of the CPU in GHz and number of solvers running in
parallel, respectively. The t[h] column contains the total runtime in hours for all instances solved
within 15 minutes. We enforced limits using kernel governor parameters. Frequencies marked by ?
are CPU base-frequencies. † we could not enforce frequencies due to administrative restrictions.
For Coppermine (PIII), we directly list the results by Fichte et al. [22].

features can significantly impact performance and uncertainty on modern hardware [34].353

We provide a brief experiment in Section 3.3 to illustrate effects. Within the operating354

system, the concept is known as dynamic CPU frequency scaling or CPU throttling, which355

allows a processor to run at frequency that is not its maximum frequency to conserve power356

or to save the CPU from overheating if the frequency is beyond its thermally save base357

frequency. In fact, modern operating systems have options to manually set performance358

states. In Linux, the CPU frequency scaling (CPUFreq) subsystem is responsible for scaling.359

It consists of three layers, namely, the core, scaling governors, and scaling drivers [97].360

Available capabilities to modify the CPU frequency depend on the available hardware and361

driver [97]. A scaling governor implements a scaling algorithm to estimate the required CPU362

capacity [12]. However, minimum and maximum frequency can also be fixed by modifying363

kernel values. Specifications of modern CPUs detail the safe operating temperature (Thermal364

Velocity Boost Temperature) that still allows to boost the cores to their maximum frequency.365

Tools to Modify the CPU Frequency. The tool cpupower provides functions to366

gather information about the physical CPU and set the scaling frequency. The flag frequency-367

info lists supported limits, activated governor, and current frequency. The tool turbostat368

allows to obtain extended information about base frequency, the maximum frequency, and369

the maximum turbo frequency depending on how many cores are active. The program370

frequency-set allows to set the maximum and minimum scaling frequency using flags -u371

and -d, respectively. However, the values can also be manually read/set in the kernel by372

modifying a text file. The turbo needs to be manually modified depending on the driver [97].373

The current frequency can be tested explicitly by running the command: perf stat -e374

cycles -I 1000 cat /dev/urandom > /dev/null.375

Revisiting the Experiment. With the knowledge of frequency scaling at hand, we376

focus our attention to Table 2. There, we state runtime results and number of solved377

instances in dependence of platform and CPU frequency. More precisely, the maximum CPU378

frequency and the chosen frequency scaling. Obviously, the runtime and number of solved379

instances significantly depends on the frequency scaling of the CPU, which already explains380

why CPUs that permit a higher frequency show less solved instances. From the number of381

solved instances for Comet Lake (i7 Gen10) CPU and Coppermine (PIII) CPU, we can382

also see that an increase in CPU frequency alone is clearly not the reason for modern solvers383

running faster on modern hardware than on old hardware.384

Suggested Setup. When handling thermal management for experiments, one usually385

balances between three objectives (i) stability and repeatability of the experiment; (iia) max-386
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imum speed vs (iib) throughput; and (iii) low effort or no access to thermal management387

functions of the operating system while aiming to balance (i) and (ii). If we focus our setup388

on Objective (i), a conservative choice is to set the CPU frequency to its base frequency389

and limit the parallel processes according to available NUMA regions. Then, the thermal390

management has limited effects on an experiment. Running the same experiment another391

system, where the CPU frequency was fixed to the same value and where the memory layout392

is comparable, shows similar results for CPU-intensive solvers. Such an approach could393

simplify certain aspects of repeatability. However, then the number of solved instances is394

lower than the actual capabilities of the hardware, the experiment takes longer, and fewer395

instances are solved. If we balance towards Objective (iia) obtaining maximum speed of396

the individual solvers, we ignore thermal management, run at maximum speed, and execute397

all runs sequentially. However, then throughput is low, only a low number of instances are398

solved, and vasts of resources on typical server CPUs are wasted. If we balance towards399

Objective (iib) obtaining maximum throughput during the experiment, we run a number of400

solvers in parallel for which there is low effect on the turbo frequency. We can obtain the401

value by the tool turbostat. For example, a turbo frequency of 3.9GHz might be acceptable402

over 4.7GHz if 4 additional solvers can be run in parallel. In fact, one could also simply403

try to repeat the experiments often to avoid balancing between Objective (iia) and (iib),404

which would however often require plenty of resources. If we are in Situation (i) with no405

access to modify the CPU thermal management capabilities or we just want to keep tuning406

efforts low while still having a reasonable throughput at low solving time, we can just test407

a reasonable setup. We lookup the thermal velocity boost (TVB) temperature, e.g., [45].408

Then, we execute a run with parallel solvers and sample CPU temperature. After evaluating409

several parallel runs, we favor a configuration where the median temperature is below the410

TVB temperature and the maximum temperature rarely exceeds TVB temperature.411

3.3 CPUs and Parallel Execution412

In the 2000s, the end of Moore’s law [69] seemed near as CPU frequency improvements for413

silicon-based chips started to slow down [9, 78]. Parallel computation started to compensate414

for this trend and multi-core hardware found its way into consumer computers around415

2004. In 2021, parallel hardware is widespread, for example, standard desktop hardware416

regularly has 8 cores (Intel i9 or Apple M1) or 12 cores (AMD Ryzen) and server systems417

go up to 64 cores (AMD Rome) or even 128 cores (Ampere Altra) per CPU where multiple418

sockets are possible. Still, parallel solving is rare in combinatorial communities such as SAT419

solving [35, 62] or beyond [23]. So a common question that arises in empirical problem420

solving is whether one can execute sequential solvers meaningful in parallel and speed-up the421

solution of the overall set of considered instances for an empirical experiment. While it clearly422

makes sense to carry out an experiment in parallel, one needs some background understanding423

on the hardware architecture of multi-core systems and on how to gather information about424

the actual system on which experiments are run. Modern systems with multiple processors on425

multiple sockets and processors that have multiple cores use a special memory design, namely426

Non-uniform memory access (NUMA). There, access time to RAM depends on the memory427

location relative to the physical core. Each processor is directly connect to separate memory;428

access to “remote” RAM is still possible, but the requests are much slower since they pass429

through the CPU that controls the local RAM. If the operating system supports NUMA and430

the user is aware of the NUMA layout of the used system, the hardware architecture can431

help to eliminate performance degeneration that can occur due to allocation of RAM that is432

associated with another socket [37, 57]. The effect can be measurable, if consecutive pages433



J.K. Fichte, M. Hecher, C. McCreesh, A. Shahab 55:11

are used by exactly one process as done in combinatorial solving. NUMA hardware layout434

also effects the cache hierarchy (L1, L2, often L3) and address translation buffers (TLB).435

Recall that caches can have a measurable effect on effectiveness of combinatorial solvers [24].436

Evidently, if running an experiment a modern operating system does not solely execute the437

program under test. It runs function of the operating system itself, events from the hardware438

such as input from disk, network, user-interfaces or output to graphics devices. Further,439

programs or functions to control or monitor the program under test are running. These440

functions might interrupt the execution of the program under test and are often triggered by441

a mechanism called interrupt. In system programming an interrupt service routine (ISR)442

handles a specific interrupt condition and is often associated with system drivers or system443

calls. A common urban legend among students in the combinatorial solving community444

is that interrupt handling happens on CPU Core 0 (monarch core) and hence no solver445

should be scheduled on Core 0. However, this is only true when booting the system when446

firmware hands over control to the operating system kernel. Then, only one core is running,447

which usually is Core 0, takes on all ISR handling, initializes the system and starts all other448

cores. In old operating systems load was not distributed to other cores by default and hence449

the core that started the system would handle all ISRs. However, since version 2.4 Linux450

supports a concept called SMP affinity, which allows to distribute interrupt handling [67].451

The actual balancing and distribution of hardware interrupts over multiple cores is then452

done by a system process, namely irqbalance [41]. Depending on the Linux distribution the453

balancing is done one-shot at system start, during runtime, or entirely omitted. Nonetheless,454

it might be helpful to understand the configured system behavior [76].455

Tooling for Information on the CPU. Often, we need information on the CPU as456

starting point for setting up parallel execution of an experiment. Linux reports information457

on the CPU in the proc filesystem as text (/proc/cpuinfo) [10]. Among the information is458

data about the CPU model, microcode, available cores, and instruction sets. The tool lscpu,459

which is part of util-linux in most distributions, reports more details on the CPU such as460

architecture, cache sizes, number of sockets, number of virtual or physical cores, number461

of threads per core, details on NUMA regions, and active flags. More detailed information462

on NUMA regions can be obtained by running the tool numactl with flag –hardware, using463

lscpu, or by manually listing details in the cpulist. Note that NUMA regions and core464

numbering can be a bit tricky as cores and NUMA regions are often not in consecutive order.465

Restricting NUMA, CPU, and IRQ affinity. When running a program on a466

multicore system, the scheduler in the operating system decides on which core the program467

runs. In principle, this depends on the current load and on a memory placement policy468

of the system. Some enterprise distributions have automated processes running (numad),469

which automatically estimate or balance NUMA affinity. Primary benefits are reported for470

long-running processes with high resource load, but degeneration for continuous unpredictable471

memory access patterns. The core and allowed memory regions can also be manually restricted.472

The tool numactl provides functionalities to force the execution of a program to certain473

NUMA nodes or cores, including strict settings [51]. The tool runsolver, which we already474

mentioned above, allows for setting the NUMA and CPU affinity. On modern distributions,475

these settings can also be set when running a program by systemd. Literature on manually476

tuning NUMA regions and CPU affinity reports both positive and negative effects, but less477

than 5% performance gain on full core CPU loads [38, 43]. Hence, detailed manual tuning478

might have a far less effect than what is usually anticipated within the community. Since479

combinatorial solvers often rely on fast access to caches, it might be more important to480

ensure that caches are accidentally shared between several running solvers. In principle,481

CP 2021

/proc/cpuinfo


55:12 Complications for Computational Experiments from Modern Processors

p tr[h] fo[GHz] fstd θo[◦C] θmax s(1) s(5) s(10) s(15) s(25) ts[h] s5k

1 7.37 3.90 0.26 53.4 64.0 132 179 190 191 193 3.82 161
2 4.06 3.69 0.29 60.8 72.5 125 179 189 191 193 4.27 158
4 2.49 3.30 0.28 74.2 92.0 120 175 183 190 192 5.01 150
6 1.85 2.95 0.30 76.6 94.5 111 171 181 189 191 6.03 142
8 1.77 2.81 0.46 74.5 94.0 98 160 176 183 190 6.05 131

10 1.77 2.71 0.57 74.0 92.0 88 155 174 181 189 6.78 123

12 1.59 2.59 0.51 87.0 72.5 80 147 170 176 187 10.82 117
14 1.47 2.51 0.28 91.5 72.5 88 155 174 181 189 11.17 111

Table 3 Overview on frequency scaling, thermal observations, and the number of solved instances
(out of 200) on an Intel Comet Lake (i7 Gen10) processor for different number of parallel runs
of the solver CaDiCal. The column “p” refers to an upper bound on the number of instances that
are solved in parallel and “tr[h]” refers to the total runtime of the experiment in hours. While
the maximum CPU frequency is 4.7 GHz, the column “fo” states the observed frequency in GHz
and fstd to its standard deviation. Column “θo” lists the observed CPU temperature; θmax to the
maximum temperature in ◦C. The column “s(x)” contains the number of solved instances when
the runtime is cut off after x minutes. The column “ts” refers to the total runtime (real-time) of
the solved instances in hours at maximum runtime of 1500s for each instance. Finally, “s5k” how
many instances can be solved in 5000s if instances are ordered by hardness and each run has at most
1500s. We used a simple python wrapper to start the parallel runs.

the IRQ affinity can be managed manually by setting dedicated flags for the system service482

irqbalance. However, time might be better spent on avoiding over-committing CPUs.483

Suggested Tooling and Setup. Experiments that involve measuring runtime need484

exclusive access to the machine on which experiments are run, i.e., no other software interferes485

in the background (e.g., running a system update, database, file server, browser, GUI with486

visual effects) and no other users access the system in the meantime. If the hardware is used487

for other purposes, runtime differences of 30% and more are common. If an experiment runs488

on an HPC environment, a uniform configuration is indispensable, i.e., all nodes have the489

same CPU, microcode, and memory layout. The number of scheduled solver resources should490

never equal the number of cores on the system, since almost all combinatorial solvers use491

CPU(s) at full load and operating system and measurement tools require a certain overhead.492

If NUMA layout details are missing, one can take a rough estimate. Assume that controlling493

and monitoring software as well as the operating system need one core per tested program,494

add the expected number of occupied cores of the tested solver, and for a safe buffer multiply495

the result by two. However, a better approach is to gather detailed information and test496

whether an anticipated setup is stable. Information on the available CPUs and NUMA497

regions can be obtained by using the tools lscpu and numactl. Modern operating systems498

implement NUMA scheduling already well. However, it is still important to report details of499

the system within logs of the experiments. If manual NUMA region enforcement is needed,500

each running solver should only access the NUMA region on which it is pinned to [77]. Solvers501

requiring fast caches should not be scheduled in parallel on cores sharing L1 and L2 cache.502

Effects of Parallel Runs, CPU Scaling, and Timeouts in Practice503

In the previous section, we listed complications that may occur from technical specifications504

of modern processors and techniques present in modern operating systems. Next, we present505

a detailed experiment on parallel execution of solvers incorporating effects of actual processor506

frequency, stability of parallel runs, thermal issues, in combination with runtime and number507
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Figure 1 Illustration of the CPU frequency scaling when running the sequential solver CaDiCal
on the considered instance set by solving in parallel 1 instance (upper) and 8 instances (lower).

of solved instances. We specify the setup, used measures, and common expectations of which508

some might be contradictory. In order to obtain a better view on effects of timeouts, we509

increase the maximum runtime per instance to 1500 seconds.510

I Experiment 1 (Parallel Runs). We investigate complications of solving multiple instances511

in parallel with one sequential SAT solver on a fixed hardware.512

Setup: solve 200 instances by one SAT solver (CaDiCal) on Comet Lake (i7 Gen10),513

maximum runtime per instance (timeout) 1500 seconds.514

Measures: Runtime (real-time) [h], number of solved instances, temperature (median515

of sampling each 1s the average temperature over all cores) [ ◦C], and CPU516

frequency (median of sampling each 1s the average over all cores) [GHz].517

Expectation 1a: Solving should never be executed in parallel on one machine as the518

runtime and number of solved instances significantly differ otherwise.519

Expectation 1b: Full parallel capabilities should be employed as long as runtime and520

number of solved instances remains similar.521

Expectation 2: Relying on multithreading degrades runtime.522

Expectation 3: Measures are stable over small runtime changes.523

Observations: Results of the first experiment are illustrated in Table 3. The number of524

solved instances for 1, 5, 10, 15, and 25 minutes provide an overview on how many instances525

can be solved quickly. Unsurprisingly, the total runtime of an experiment depends on the526

number of parallel processes running. More precisely, the total runtime of the experiment527

varies between 7.37 hours and 1.77 hours when running 1 or 10 instances in parallel. Just528

by running 4 instances in parallel instead of 1 we cut runtime down to 33% of the original529

runtime and still to 55% for 2 instances. However, the total real-time of the solved instances530

varies between 3.82 hours and 6.78 hours (44%). The number of solved instances varies by531

2% at 25 minutes and 5% at 15 minutes, 13% at 5 minutes, and 33% at 1 minute timeout.532

When comparing the effect on the measure how many instances can be solved within 5000s,533

we obtain a notable 24% decrease. Surprisingly, the median CPU frequency never reached534

4.7GHz even when running only one instance. The actual frequency reduced significantly535

when more instances are running. Figure 1 illustrates the changes of the CPU frequency over536

time for 1 and 8 instances solved in parallel. We see that the frequency is hardly consistent537

and increases significantly as soon as most instances are finished and less processes run in538

parallel. When using multiple cores, the median CPU temperature increases significantly and539

may even spike (94◦C) close to the maximum operating temperature of the CPU (100◦C).540

CP 2021



55:14 Complications for Computational Experiments from Modern Processors

Interpretation. On the considered set of instances, the number of solved instances and541

real-time over all solved instances decreases with an increasing number of instances run in542

parallel. The effect is particularly high, if the timeout was set very low or if the measure is543

number of instances solved within 5000s. This is not entirely surprising, since instances in544

the considered set were selected by Hoos et al. [40] using a distribution of instance hardness545

leading to many instances of medium hardness and a few easy and hard instances. Then, if546

the considered timeout is low, a small constant improvement by hardware effects can increase547

the number of solved instances notably. In contrast, there is only a 2% difference between548

number of solved instances when timeouts are higher. The measure of solved instances within549

5000s is particularly runtime dependent and hence configuration of the experimental setup550

has notable effects. Regarding runtime, we can see that the real-time over all solved instances551

almost doubles when running almost as many instances as cores are available. However,552

the entire experiment finishes significantly faster, i.e., about 24% of the original runtime.553

Surprisingly, the CPU frequency was far below the potential 4.7GHz. If we check more554

details on the specification of the Comet Lake (i7 Gen10) CPU or by running the tool555

turbostat, we observe that the maximum frequency of the CPU is only 3.9GHz if 6 cores556

are active, i.e., not explicitly suspended. While our considered system has 12 MT cores, it557

has only 6 physical cores. Hence, we observe a measurable degeneration in number of solved558

instances when running more instances in parallel than present physical cores are present.559

When considering runtime, we observe a considerable increase when more than 2 instances560

run in parallel, as CPU frequency measurably drops and temperature increases significantly.561

Outcome: After summarizing observations and interpretation of our experiment, we562

briefly evaluate phrased expectations from above. In theory, we would expect that Expec-563

tation 1a is true for real-time and number of solved instances within 5000s, which is also564

quite sensitive for runtime influences. Indeed, there is a measurable influence in runtime,565

but only slightly decrease in number of solved instances, while the experiment finishes much566

faster. If we take higher timeout, the number of parallel executions affects the runtime only567

if already known rough estimates are exceeded. Still, the number of parallel executions is568

influenced by throttling of the processor. Expectation 1b clearly does not hold. All measures569

are influenced by a higher system load and hence by solving several instances in parallel.570

While we can confirm Expectation 3 in the experiment, multithreading is not the only reason.571

Clearly, already when using all available cores runtime and number of solved degenerate.572

Unfortunately, our experiment does not fulfill Expectation 3. All considered measures are573

influenced by parallel execution. Especially, limiting the total solving time is prone to574

hardware effects and might accidentally over-highlight constant runtime improvements. Since575

the frequency is also not stable when running only one instance, fixing the frequency might576

be a reasonable approach during experimenting. However, if the base-frequency is exceeded,577

a stable frequency should be estimated and experimentally verified before comparing runtime578

and number of solved instances with multiple solvers. In our case, operating the CPU at579

fixed 3GHz showed stable frequency results when running 1–2 instances in parallel. Under580

the light of the mentioned complications, we fear that a single measure incorporating runtime,581

number of solved instances, and a cutoff time is problematic if setup is neglected.582

3.4 Input/Output583

Input and output performance, I/O for short, talks about read or write operations involving584

a storage device. On a desktop computer storage is usually restricted to local disks. On585

cluster environments, nodes have access to a central storage over network, fast temporary586

storage (over network), and local disks. Here, a variety of different topics are involved, for587
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example, hardware (storage arrays/network), network protocols, and file systems, which can588

make it inherently complicated. Therefore, we provide only a brief and simple suggestion:589

keep external influence as low a possible. When reading input and writing output, use a590

shared memory file system (shm) to avoid external overhead. Before starting the solver under591

test, input files are copied in-memory. Then, measuring runtime starts when executing the592

solver, which takes as input the temporary files on the memory and outputs only to a shared593

memory file system. The measurement ends when the solver is terminated and afterwards594

temporary files are copied to the permanent storage and deleted from the temporary storage.595

This approach minimizes side effects from slow network devices and avoids side effects that596

may occur with large files and system file caches, especially when running multiple solvers597

on the same input. However, if files are too large or solvers need the entire RAM, temporary598

in-memory cannot be used and fast local disks (e.g., NVMe) can provide an alternative.599

4 Conclusion600

Empirical evaluations are essential to confirm observations in algorithmics and combinatorics601

beyond theory. Many evaluations typically focus on comparing runtimes and number of602

solved instances, since both measures are easy targets for comparison and probably roughly603

reflect needs of end users. However, the number of solved instances is sensitive to the chosen604

benchmark, so one has to be cautious about it. Playing devils advocate, we can even ask to605

what extent runtime is even a meaningful measure on modern hardware. If one solver is a606

factor of ten faster than another, we are fairly confident in it, but does modern hardware607

allow for accurate comparisons at a range of, say, 10%, which might be the contribution of608

an individual feature or optimization towards the hardware? Similar to experimental physics,609

we can simply repeat an experiment often or repeat in different environments. However,610

in combinatorial solving this is not always possible if many solvers need to be tested or a611

reasonably high number of hard instances have to be considered. Hence, we believe that an612

experimental setup should still be carried out thoroughly. Future work could consider up to613

what extent certain aspects can be neglected and how repetition can circumvent minor issues.614

In fact, our work only explains and illustrates certain complications from modern hardware615

to make researchers aware of potential issues. In a way, we also show that complications do616

not just concern CPU frequency, but also the experimental setup (timeouts, cutoffs, parallel617

running processes). Clearly, there is no reason to forbid the use of certain platforms, if we618

are aware of complications. On the meta level, we believe that clearly marking strengths and619

weaknesses of solvers provides more insights than finding scenarios where one solver is best.620

An interesting question for future research is the boarder topic of SIMD and branch621

prediction, which could affect repeatability, replicability, and reproducibility. Both features622

are quite relevant for how a good solver author can write code, but it is unclear whether623

they can even change the overall results when comparing two solvers. In practice, one could624

maybe investigate issues by taking different versions of a CPU (or different firmware).625

Further, we think that papers presenting experimental evaluations could provide a simple626

benchmark protocol as appendix, similar to literature as part of reproducibility work. Best627

practices and checklists could be developed in a community effort after thorough discussions628

and more detailed works. This can also include detailed guides or suggested configurations for629

standard cluster schedulers such as Slurm [99]. Having a list of common parameters to report630

or even practical tools could prevent manual repetitive labor. Thereby, we leave room for631

actual scientific questions, e.g., why implementations are efficient for certain domains [91, 29].632

Finally, our experiments focused on consumer hardware, detailed investigations with633

server hardware are interesting for future investigations to confine limits of parallel execution.634
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