
An Exact Branch and Bound Algorithm with
Symmetry Breaking for the Maximum Balanced

Induced Biclique Problem

Ciaran McCreesh1 and Patrick Prosser2

1 University of Glasgow c.mccreesh.1@research.gla.ac.uk
2 University of Glasgow patrick.prosser@glasgow.ac.uk

Abstract. We show how techniques from state-of-the-art branch and
bound algorithms for the maximum clique problem can be adapted to
solve the maximum balanced induced biclique problem. We introduce a
simple and effective symmetry breaking technique. Finally, we discuss
one particular class of graphs where the algorithm’s bound is ineffective,
and show how to detect this situation and fall back to a simpler but
faster algorithm. Computational results on a series of standard bench-
mark problems are included.

1 Introduction

1
2

3

4

56

7

8

9

Fig. 1. A graph, with its
unique maximum balanced in-
duced biclique of size six,
{{1, 2, 3}, {6, 7, 8}}, shown in
light and dark blue.

Let G = (V,E) be a graph (by which we always
mean finite, undirected and with no loops) with
vertex set V and edge set E. A biclique, or com-
plete bipartite subgraph, is a pair of (possibly
empty) disjoint subsets of vertices {A,B} such
that {a, b} ∈ E for every a ∈ A and b ∈ B. A
biclique is balanced if |A| = |B|, and induced if
no two vertices in A are adjacent and no two ver-
tices in B are adjacent. The maximum balanced
induced biclique problem is to find a balanced in-
duced biclique of maximum size in an arbitrary
graph. We illustrate an example in Fig. 1.

Finding such a maximum is NP-hard [1, Prob-
lem GT24], both in bipartite and arbitrary graphs.
A näıve exponential algorithm could simply enu-
merate every possible solution to find a maximum.
Here we develop a branch and bound algorithm
with symmetry breaking that substantially reduces the search space. We believe
that this is the first attempt at tackling this problem. We are not yet aware of
any practical applications, but the problem is interesting from an algorithmic
perspective.

If G = (V,E) is a graph, we write V(G) for the vertex set V . The neighbour-
hood of a vertex v in a graph G is the set of vertices adjacent to v; we denote
this NG(v). The degree of a vertex is the cardinality of its neighbourhood.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E;
the subgraph induced by V ′ is the subgraph with vertex set V ′ and all possible
edges. A set of vertices, no two of which are adjacent, is called an independent
set. A set of vertices, all of which are adjacent, is called a clique; the size of a
maximum clique is denoted ω. A clique cover is a partition of the vertices in a
graph into sets, each of which is a clique. We introduce the symbol ω̈ for the
size (i.e. |A| + |B|) of a maximum balanced induced biclique, which is always
even (this simplifies comparisons with unbalanced biclique variants). A graph is
bipartite if its vertices may be partitioned into two disjoint independent sets.

2 A Branch and Bound Algorithm

A very simple branch and bound algorithm for the maximum induced biclique
problem is given in Algorithm 1. The algorithm works by recursively building
up two sets A and B such that {A,B} is a biclique. At each stage, Pa contains
those vertices which may be added to A whilst keeping a feasible solution (i.e.
each v ∈ Pa is individually adjacent to every b ∈ Pb and nonadjacent to every
a ∈ A), and similarly Pb contains vertices which may be added to B. Initially,
A and B are both empty, and Pa and Pb both contain every vertex in the graph
(line 4).

At each recursive call to expand, a vertex v is chosen from Pa (line 8) and
moved to be in A instead (lines 10 and 11). The algorithm then considers the
implications of v ∈ A (lines 12 to 17). A new P ′

a is constructed on line 12 by
filtering from Pa those vertices adjacent to v (since A must be an independent
set), and a new P ′

b is constructed on line 13 by filtering from Pb those vertices
not adjacent to v (everything in B must be adjacent to everything in A).

Now if P ′
b is not empty, we may grow B further. Thus we repeat the process

with a recursive call on line 17, swapping the roles of A and B—we are adding
vertices to the two sides of the growing biclique in alternating order.

Having considered the possibility of v ∈ A, we then consider v /∈ A (line 18).
The algorithm loops back to line 8, selecting a new v from Pa, until Pa is empty.
Finally, we backtrack by returning from the recursive call.

We keep track of the largest feasible solution {Amax, Bmax} that we have
found so far; this is called the incumbent. Initially it is empty (line 3). Whenever
we find a potential solution, we compare it to the incumbent (line 14), and if our
new solution is larger then the incumbent is unseated (line 15). Note that at this
point, the balance condition must be checked explicitly, since either |A| = |B|,
or |A| = |B|+ 1 could be true.

Knowing the size of the incumbent allows us to avoid exploring some of the
search space—this is the bound part of branch and bound. The condition on
line 9 checks how much further we can grow A and B: if there are not enough
vertices available to potentially unseat the incumbent, search at the current
position can be abandoned. (This is not a very good bound, and is only for
illustrative purposes. We discuss a more sophisticated bound below.)

Algorithm 1: A simple, alternating branch and bound algorithm for the
maximum balanced induced biclique problem.

1 simpleBiclique :: (Graph G) → (Set of Integer, Set of Integer)
2 begin
3 (Amax, Bmax)← (∅, ∅) // Initially our best solution is empty

4 expand(G, ∅, ∅,V(G),V(G), Amax, Bmax)
5 return (Amax, Bmax)

6 expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
7 begin
8 for v ∈ Pa do
9 if |Pa|+ |A| > |Amax| and |Pb|+ |B| > |Bmax| then

10 A← A ∪ {v} // Consider v ∈ A
11 Pa ← Pa \ {v}
12 P ′

a ← Pa ∩NG(v) // Remove vertices adjacent to v
13 P ′

b ← Pb ∩NG(v) // Remove vertices not adjacent to v
14 if |A| = |B| and |A| > |Amax| then
15 (Amax, Bmax)← (A,B) // We’ve found a better solution

16 if P ′
b 6= ∅ then

17 expand(G,B,A, P ′
b, P

′
a, Bmax, Amax) // Swap and recurse

18 A← A \ {v} // Now consider v /∈ A

Improving the Algorithm We now adapt Algorithm 1 to incorporate symmetry
breaking, an improved bound based upon clique covers, and an initial sort or-
der. The end result is Algorithm 2. We have explicitly designed the algorithm
to permit a bitset encoding for the data structures. For the maximum clique
problem, this technique has allowed an increase in performance of between two
and twenty times, without altering the steps taken by the algorithm. We refer
to work by San Segundo et al. [2,3] for implementation details.

Symmetry Breaking The search space for Algorithm 1 is larger than it should be:
it explores legal ordered pairs (A,B) of vertex sets rather than unordered pairs
{A,B}. Having explored every possible solution with v ∈ A, the search then
considers v /∈ A. But there is nothing to stop it from then considering a new
v′ ∈ A, and later placing v ∈ B. This is wasted effort, since if such a solution
existed we would already have considered an equivalent with A and B reversed.

We may break this symmetry as follows: if, at the top of search, we have
considered every possibility with v ∈ A then we may eliminate v from Pb to
avoid considering v ∈ B. The modified expand function in Algorithm 2 includes
this rule: lines 38 to 39 remove symmetric solutions.

This technique may be seen as a special case of the standard lex symmetry
breaking technique used in constraint programming [4,5]. A constraint program-
mer would view A and B as binary strings, and impose the constraint B ≤ A

Algorithm 2: An improved alternating branch and bound algorithm for
the maximum balanced induced biclique problem.

1 improvedBiclique :: (Graph G) → (Set of Integer, Set of Integer)
2 begin
3 (Amax, Bmax)← (∅, ∅) // Initially our best solution is empty

4 permute G so that the vertices are in non-increasing degree order
5 expand(G, ∅, ∅,V(G),V(G), Amax, Bmax)
6 return (Amax, Bmax) (unpermuted)

7 cliqueSort :: (Graph G, Set P) → (Array of Integer, Array of Integer)
8 begin
9 bounds← an Array of Integer

10 order ← an Array of Integer
11 P ′ ← P // vertices yet to be allocated

12 k ← 1 // current clique number

13 while P ′ 6= ∅ do
14 Q← P ′ // vertices to consider for the current clique

15 while Q 6= ∅ do
16 v ← the first element of Q // get next vertex to allocate

17 P ′ ← P ′ \ {v}
18 Q← Q ∩N(G, v) // remove non-adjacent vertices

19 append k to bounds
20 append v to order

21 k ← k + 1 // start a new clique

22 return (bounds, order)

23 expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
24 begin
25 (bounds, order)← cliqueSort(G,Pa)
26 for i← |Pa| downto 1 do
27 if bounds[i] + |A| > |Amax| and |Pb|+ |B| > |Bmax| then
28 v ← order[i]
29 A← A ∪ {v} // Consider v ∈ A
30 Pa ← Pa \ {v}
31 P ′

a ← Pa ∩NG(v) // Remove vertices adjacent to v
32 P ′

b ← Pb ∩NG(v) // Remove vertices not adjacent to v
33 if |A| = |B| and |A| > |Amax| then
34 (Amax, Bmax)← (A,B) // We’ve found a better solution

35 if P ′
b 6= ∅ then

36 expand(G,B,A, P ′
b, P

′
a, Bmax, Amax) // Swap and recurse

37 A← A \ {v} // Now consider v /∈ A
38 if B = ∅ then
39 Pb ← Pb \ {v} // Avoid symmetric solutions

(or the other way around—after all, the order of A and B is arbitrary). We are
doing the same thing, by saying that if the first n bits of A are 0 then the first
n bits of B must also be 0. Unlike adding a lex constraint, this approach does
not interfere with the search order and does not introduce the risk of disrupting
ordering heuristics [6]. Additionally, this constraint always removes symmetric
solutions from the search tree as early as possible [7].

Bounding We know that A and B must be independent sets. Finding a maxi-
mum independent set is a well studied NP-hard problem (although the literature
usually discusses finding a maximum clique, which is a maximum independent
set in the complement graph), and the main inspiration for our algorithm comes
from a series of maximum clique algorithms due to Tomita [8,9,10]. These are
branch and bound algorithms which use graph colouring (i.e. a clique cover in
the complement graph) both as a bound and an ordering heuristic.

If we can cover a graph G using k cliques, we know that G cannot contain
an independent set of size greater than k (each element in an independent set
must be in a different clique). Finding an optimal clique cover is NP-hard, but
a greedy clique cover may be found in polynomial time. This gives us a bound
on Pa which can be much better than simply considering |Pa|: we construct a
greedy clique cover of the subgraph induced by Pa, and consider its size instead.

Constructing a clique cover gives us more information than just a bound on
the size of an independent set in all of Pa. This is the main benefit of Tomita’s
approach: a constructive greedy clique cover gives us an ordering heuristic and
a way of reducing the number of clique covers which must be computed.

Tomita has considered ways of producing and using greedy colourings; we
refer to a computational study by Prosser [11] for a detailed comparison. Our
greedy clique cover bound and ordering routine is presented in Algorithm 2. The
approach we have taken is a variation by San Segundo [2,3] which allows a bitset
encoding to be used.

The cliqueSort function in Algorithm 2 produces two arrays. The bounds
array contains bounds on the size of a maximum independent set: the subgraph
induced by vertices 1 to n of order cannot have a maximum independent set
of size greater than bounds[n]. The order array contains the vertices of P in
some order, and is to be traversed from right to left, repeatedly removing the
rightmost value for the choice branching vertex v.

These arrays are constructed in the cliqueSort function as follows: the vari-
able P ′ tracks which vertices have yet to be allocated to a clique, and initially
(line 11) it contains every vertex in the parameter P . While there are unallocated
vertices (line 13), we greedily construct a new clique. The variable Q (line 14)
tracks which vertices may legally be added to this growing clique. On line 16 we
select a vertex v from Q, add it to the clique, and on line 18 we remove from
Q any vertices which are not adjacent to v (so every vertex remaining in Q is
adjacent to every vertex in the growing clique). We continue adding vertices to
the growing clique until Q is empty (line 15), indicating we can go no further.
We then start a new clique (line 21, looping back to line 13) if some vertices
remain unallocated.

To integrate this bound, we make the following changes: we begin by using
cliqueSort to obtain the bounds and order variables (line 25). We explicitly
iterate over order from right to left (lines 26 and 28), rather than drawing v
from Pa arbitrarily. And we make use of the bound on Pa, rather than using |Pa|
(line 27).

Search Order We use a static ordering for constructing clique covers, so the
initial order of vertices must also be considered—experiments show that, as for
the maximum clique problem, a static non-increasing degree order fixed at the
top of search is a good choice. We achieve this ordering by permuting the graph
(again, to allow the possibility of a bitset encoding).

Detecting when the Bound is Useless Our bound considers how far A can grow,
based upon what is in Pa, and how far B can grow based upon what is in Pb. If
both Pa and Pb are independent sets, this does not help, and constructing the
clique cover ordering is a substantial overhead. This situation occurs in particular
if the input is a bipartite graph, or close to one. We can at least detect when Pa

is an independent set: this happens precisely if bounds[i] = i (assuming bounds
is 1-indexed), since if the graph contains at least two non-adjacent vertices then
at least one such pair will be placed in the same clique [12, Proposition 2].

Ideally we would be able to switch to a better bound in the case that both
Pa and Pb are (potentially overlapping) independent sets. However the authors
have been unable to find a better bound which is sufficiently cheap to compute
to provide a benefit—approaches which reduce the search space but increase
runtime include the use of degrees, indirect colouring, or the fact that finding an
(unbalanced) induced biclique in a bipartite graph can be done in polynomial
time via a matching algorithm. However, we may still decay to a version of the
algorithm which includes symmetry breaking and uses cardinality bounds as in
Algorithm 1. We do not demonstrate this technique in Algorithm 2, but it is
simple to incorporate.

3 Computational Experiments

We now present experimental results on a range of standard benchmark prob-
lems. The algorithm was implemented using C++, with a bitset encoding. The
experiments were run on a machine with four AMD Opteron 6366 HE proces-
sors, and single-threaded runtimes are given. The implementation does include
detection for independent sets, and falls back to a simple algorithm when this
happens. Timing results include pre-processing and the initial sorting step, but
do not include the time taken to read a graph in from a file. For the maximum
clique problem, a sequential implementation previously described by the authors
[13] was used.

In Table 1 we present results from four datasets. First is all the graphs
from the Second DIMACS Implementation Challenge3. Many of these graphs

3 http://dimacs.rutgers.edu/Challenges/

http://dimacs.rutgers.edu/Challenges/

are dense, and designed to be computationally challenging for maximum clique
algorithms. The second dataset is the smallest family of graphs for BHOSLIB4.
These graphs contain a hidden clique of known size; again, these are challenging
for maximum clique algorithms. Thirdly, we look at some large sparse graphs
from BioGRID [14]. Finally, we include some large sparse graphs from a collection
by Mark Newman5. For each instance we show results for both maximum clique
and maximum balanced induced biclique: we show the size of the result, the time
taken, and the number of search nodes (recursive calls made). Longer-running
problems were aborted after one day; such results are shown in parentheses.

Sometimes ω̈ = ω, sometimes it is larger, and sometimes it is smaller. Often
finding ω̈ was easier than finding ω (and there are no problems where the biclique
search was aborted after a day but where the clique succeeeded), but not always.

Further experiments show that the symmetry breaking technique is successful
in reducing both runtimes and the size of the search space. In many instances the
gain approaches 50% (this is expected: halving the number of solutions will not
halve the size of the search space). In other cases the interaction of the bound
and symmetry breaking reduces the benefit (sometimes to zero, when the bound
can already eliminate symmetric solutions), but it is never a penalty.

Detecting when the bound is useless and decaying to a simpler algorithm
provides a measurable benefit for several of the “p hat” family of graphs and
for “san1000”, but does not generally make a substantial difference. On the
other hand, for random bipartite graphs, this technique avoids a factor of five
slowdown from the overhead of calculating a useless bound.

4 Conclusion and Future Work

We have shown that max clique techniques generalise to other graph-related
problems, although not always in the most obvious way—despite the name,
finding a biclique involves finding independent sets, not cliques. Unlike the max-
imum clique problem, symmetry is an issue, but we provided a very simple and
effective way of avoiding this problem. We do not have a good bound for the
case where both sides are already independent sets, although we can detect this
and fall back to a faster algorithm; this limitation is this work’s main weakness.

More detailed computational experiments would be beneficial, particularly
with random and (once the weakness is addressed) random bipartite graphs.
We intend to look in more detail at “where the hard problems are” for this
problem [15]: there is a conflict between wanting to create two independent sets,
and requiring those independent sets be interconnected, which means it is not
obvious how the density of a random graph would affect the difficulty.

Finally, this approach can likely be extended to exploit multi-core parallelism—
the sequential algorithms upon which this work is based have been threaded
successfully [13,16].

4 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
5 http://www-personal.umich.edu/~mejn/netdata/

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www-personal.umich.edu/~mejn/netdata/

Table 1. Results for the balanced biclique problem in DIMACS, BHOSLIB and large sparse graphs from BioGRID and Mark Newman.
For each we show the size of a maximum clique, the time taken to obtain this result, and the number of search nodes (recursive calls
made). We then give the same information for maximum balanced induced bicliques. Results in parentheses were aborted after one day.

Problem ω ω̈ Problem ω ω̈ Problem ω ω̈

Size Time Nodes Size Time Nodes Size Time Nodes Size Time Nodes Size Time Nodes Size Time Nodes

C125.9 34 91ms 50240 8 1ms 920 gen400 p0.9 75 (53) 1 day 2.0×1010 12 35ms 16388 san400 0.7 2 30 4.0s 8.9×105 28 33ms 7973

C250.9 44 3043s 1.1×109 8 12ms 12448 hamming6-2 32 0ms 32 4 0ms 4 san400 0.7 3 22 2.3s 5.2×105 38 38ms 10361

C500.9 (53) 1 day 2.0×1010 10 174ms 1.1×105 hamming6-4 4 0ms 82 14 1ms 1896 san400 0.9 1 100 52.3s 4.5×106 10 38ms 19054

C1000.9 (58) 1 day 1.3×1010 10 13.9s 7.4×106 hamming8-2 128 2ms 128 4 1ms 4 san1000 15 3.5s 1.5×105 134 167ms 10778

C2000.5 (16) 1 day 1.4×1010 (16) 1 day 2.9×1010 hamming8-4 16 80ms 36452 32 2ms 303 sanr200 0.7 18 235ms 1.5×105 10 96ms 1.3×105

C2000.9 (62) 1 day 5.5×109 12 1478s 3.2×108 hamming10-2 512 56ms 512 4 21ms 4 sanr200 0.9 42 45.2s 1.5×107 8 4ms 4095

C4000.5 (17) 1 day 7.7×109 (18) 1 day 1.4×1010 hamming10-4 (38) 1 day 1.0×1010 40 390s 4.5×107 sanr400 0.5 13 543ms 3.2×105 14 14.1s 1.4×107

DSJC500 5 13 1.8s 1.2×106 14 63.4s 6.8×107 johnson8-2-4 4 0ms 24 6 0ms 460 sanr400 0.7 21 159s 6.4×107 14 4.3s 3.4×106

DSJC1000 5 15 222s 7.7×107 16 12996s 8.9×109 johnson8-4-4 14 0ms 126 10 0ms 211

MANN a9 16 0ms 71 6 0ms 32 johnson16-2-4 8 97ms 2.6×105 14 402ms 2.2×106 frb30-15-1 30 1165s 2.9×108 30 58ms 15361

MANN a27 126 533ms 38019 6 4ms 1407 johnson32-2-4 (16) 1 day 1.4×1011 (30) 1 day 4.2×1011 frb30-15-2 30 2187s 5.6×108 30 63ms 17091

MANN a45 345 383s 2.9×106 6 56ms 9852 keller4 11 17ms 13725 18 69ms 82646 frb30-15-3 30 655s 1.7×108 30 59ms 16120

MANN a81 (1100) 1 day 8.7×107 6 974ms 53902 keller5 (27) 1 day 1.8×1010 32 7294s 3.6×109 frb30-15-4 30 3575s 9.9×108 30 61ms 16694

brock200 1 21 868ms 5.2×105 10 45ms 57931 keller6 (53) 1 day 2.6×109 (62) 1 day 6.0×109 frb30-15-5 30 1056s 2.8×108 30 55ms 14850

brock200 2 12 5ms 3826 12 111ms 1.7×105 p hat300-1 8 4ms 1480 12 195ms 2.8×105

brock200 3 15 23ms 14565 12 92ms 1.2×105 p hat300-2 25 18ms 4256 12 268ms 2.8×105 fission-yeast 12 50ms 208 12 110ms 33253

brock200 4 17 85ms 58730 12 76ms 1.0×105 p hat300-3 36 2.0s 6.2×105 12 265ms 2.3×105 fruitfly 7 518ms 47 16 584ms 11538

brock400 1 27 508s 2.0×108 12 2.3s 1.8×106 p hat500-1 9 18ms 9777 12 3.3s 3.9×106 human 13 897ms 13 18 1.0s 10300

brock400 2 29 362s 1.5×108 12 2.0s 1.8×106 p hat500-2 36 461ms 1.1×105 14 6.4s 5.9×106 mouse 7 21ms 7 10 22ms 1267

brock400 3 31 287s 1.2×108 12 2.1s 1.8×106 p hat500-3 50 201s 3.9×107 12 9.0s 6.4×106 plant 9 29ms 9 10 31ms 1578

brock400 4 33 140s 5.4×107 12 2.0s 1.8×106 p hat700-1 11 65ms 26649 12 36.8s 4.3×107 worm 7 122ms 7 12 130ms 3778

brock800 1 23 7725s 2.2×109 14 1424s 9.5×108 p hat700-2 44 5.0s 7.5×105 14 56.3s 3.5×107 yeast 33 375ms 68 14 13.4s 2.5×106

brock800 2 24 7711s 2.2×109 14 1367s 9.1×108 p hat700-3 62 2665s 2.8×108 14 67.9s 3.1×107

brock800 3 25 7138s 2.1×109 14 1448s 9.6×108 p hat1000-1 10 454ms 1.8×105 14 295s 2.5×108 adjnoun 5 0ms 17 6 0ms 207

brock800 4 26 2705s 6.4×108 14 1401s 9.4×108 p hat1000-2 46 251s 3.4×107 16 546s 3.6×108 astro 57 2.7s 57 6 3.5s 28143

c-fat200-1 12 0ms 24 2 0ms 214 p hat1000-3 (63) 1 day 8.9×109 14 1300s 5.6×108 celegens 8 1ms 32 8 2ms 1853

c-fat200-2 24 0ms 24 2 1ms 353 p hat1500-1 12 6.9s 1.2×106 16 11859s 5.2×109 condmat 30 17.2s 30 6 20.2s 63980

c-fat200-5 58 1ms 139 2 3ms 927 p hat1500-2 65 43166s 2.0×109 16 23677s 6.8×109 dolphins 5 0ms 10 4 0ms 66

c-fat500-1 14 3ms 14 2 3ms 523 p hat1500-3 (79) 1 day 3.2×109 16 25745s 5.5×109 football 9 0ms 9 4 0ms 422
c-fat500-2 26 3ms 26 2 4ms 619 san200 0.7 1 30 31ms 13399 14 6ms 4330 internet 17 5.1s 50 10 5.5s 24477
c-fat500-5 64 4ms 64 2 7ms 1398 san200 0.7 2 18 3ms 464 24 3ms 1939 karate 5 0ms 5 4 0ms 31
c-fat500-10 126 4ms 126 2 41ms 4219 san200 0.9 1 70 206ms 87329 8 3ms 1850 lesmis 10 0ms 10 4 0ms 77

gen200 p0.9 44 44 4.8s 1.8×106 10 3ms 2628 san200 0.9 2 60 769ms 2.3×105 8 4ms 3540 netscience 20 24ms 20 4 26ms 1184

gen200 p0.9 55 55 461ms 1.7×105 8 4ms 4201 san200 0.9 3 44 19.3s 6.8×106 10 3ms 2085 polblogs 20 23ms 60 12 83ms 36693

gen400 p0.9 55 (50) 1 day 2.2×1010 16 21ms 8562 san400 0.5 1 13 15ms 2453 62 9ms 1315 polbooks 6 0ms 11 4 0ms 168

gen400 p0.9 65 (49) 1 day 2.3×1010 14 26ms 11709 san400 0.7 1 40 459ms 1.2×105 20 54ms 16229 power 6 235ms 6 4 252ms 4623

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

2. San Segundo, P., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel al-
gorithm for the maximum clique problem. Comput. Oper. Res. 38(2) (February
2011) 571–581

3. San Segundo, P., Matia, F., Rodŕıguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optimization Letters (2011)

4. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR’96: Principles of Knowledge Representation and Reason-
ing, Morgan Kaufmann (1996) 148–159

5. Gent, I.P., Petrie, K.E., François Puget, J.: Symmetry in constraint programming.
In: Handbook of Constraint Programming, Elsevier (2006) 329–376

6. Gent, I.P., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking
during search. CP 2470 (2002) 415–430

7. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Con-
straints 7(3-4) (2002) 333–349

8. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maxi-
mum clique. In Calude, C., Dinneen, M., Vajnovszki, V., eds.: Discrete Mathemat-
ics and Theoretical Computer Science. Volume 2731 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2003) 278–289

9. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimization
37(1) (2007) 95–111

10. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: WALCOM
2010, LNCS 5942. (2010) 191–203

11. Prosser, P.: Exact Algorithms for Maximum Clique: A Computational Study.
Algorithms 5(4) (2012) 545–587

12. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS
algorithm for the maximum clique problem. Journal of Combinatorial Optimization
(2013) 1–20

13. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique
algorithm. Algorithms 6(4) (2013) 618–635

14. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.:
Biogrid: a general repository for interaction datasets. Nucleic Acids Research
34(suppl 1) (2006) D535–D539

15. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of the 12th international joint conference on Artificial intelligence -
Volume 1. IJCAI’91, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(1991) 331–337

16. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janežič, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. Journal of Chemical Infor-
mation and Modeling 53(9) (2013) 2217–2228

	An Exact Branch and Bound Algorithm with Symmetry Breaking for the Maximum Balanced Induced Biclique Problem

