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Abstract
Symmetry breaking is a crucial technique in modern combi-
natorial solving, but it is difficult to be sure it is implemented
correctly. The most successful approach to deal with bugs is
to make solvers certifying, so that they output not just a so-
lution, but also a mathematical proof of correctness in a stan-
dard format, which can then be checked by a formally verified
checker. This requires justifying symmetry reasoning within
the proof, but developing efficient methods for this has re-
mained a long-standing open challenge. A fully general ap-
proach was recently proposed by Bogaerts et al. (2023), but
it relies on encoding lexicographic orders with big integers,
which quickly becomes infeasible for large symmetries. In
this work, we develop a method for instead encoding orders
with auxiliary variables. We show that this leads to orders-of-
magnitude speed-ups in both theory and practice by running
experiments on proof logging and checking for SAT symme-
try breaking using the state-of-the-art SATSUMA symmetry
breaker and the VERIPB proof checking toolchain.

1 Introduction
An important challenge in combinatorial solving is to avoid
repeatedly exploring different parts of the search space that
are equivalent under symmetries. In a wide range of combi-
natorial solving paradigms, symmetry breaking is deployed
as a default technique, including mixed integer program-
ming (Achterberg and Wunderling 2013; Bolusani et al.
2024) and constraint programming (Walsh 2006). The im-
portance of symmetry breaking is supported by both theo-
retical considerations (Urquhart 1999) and experimental re-
sults (Pfetsch and Rehn 2019). A detailed discussion of sym-
metry breaking is given, e.g., by Sakallah (2021).

Symmetry breaking has not been adopted as mainstream
in Boolean satisfiability (SAT) solving, however, despite a

body of work (Aloul, Markov, and Sakallah 2003; Devriendt
et al. 2016; Anders, Brenner, and Rattan 2024) showing the
potential for speed-ups also in this setting. One reason for
this could perhaps be the higher cost, relatively speaking, of
symmetry breaking compared to low-level SAT reasoning,
but state-of-the art symmetry detection is efficient enough
to use by default without degrading performance (Anders,
Brenner, and Rattan 2024). A more important concern is that
the SAT community places a strong emphasis on provable
correctness. For over a decade, SAT solvers taking part in
the annual SAT competitions have had to generate machine-
verifiable proofs for their results. Such proofs are espe-
cially important for sophisticated techniques such as sym-
metry breaking, which is notoriously difficult to implement
correctly. However, except for some special cases (Heule,
Hunt Jr., and Wetzler 2015), it has not been known how to
generate proofs for symmetry breaking in the DRAT proof
format (Wetzler, Heule, and Hunt Jr. 2014) used in the com-
petitions, or whether this is even possible.

The way symmetry breaking is typically done in SAT
solving is by introducing lex-leader constraints, which are
encoded as the clauses

s1 ∨ x1 s1 ∨ y1 y1 ∨ x1 (1)
si+1 ∨ si ∨ xi+1 si+1 ∨ si ∨ yi+1 si ∨ yi+1 ∨ xi+1

that can be thought of as encoding a circuit enforcing
(x1, . . . ,xn) ⪯lex (y1, . . . ,yn)—here, si are fresh auxiliary
variables encoding that the x- and y-variables are equal up
to position i; using these, we enforce that xi is false and
yi true the first time this does not hold. Such clauses are
clearly not implied by the original formula, and the problem
is how to prove that they can be added without changing the
satisfiability of the input. Although the RAT rule (Järvisalo,



Heule, and Biere 2012) in DRAT can handle a single sym-
metry (Kołodziejczyk and Thapen 2024), once the first sym-
metry is broken it is not known how or even if the other
symmetries found by the symmetry breaker could be proven
correct using DRAT.

Bogaerts et al. (2023) finally resolved this long-standing
open problem by introducing a stronger proof format, which
operates with pseudo-Boolean (i.e., 0–1 linear) inequalities
rather than clauses, and reasons in terms of dominance (Chu
and Stuckey 2015) to support fully general symmetry break-
ing without any limitations on the number of symmetries
that can be handled. One benefit of this richer format is that
a single inequality

2n−1x1 + · · ·+2xn−1 +xn ≤ 2n−1y1 + · · ·+2yn−1 +yn , (2)

can be used in the proof to encode lexicographic order,
and from this constraint it is straightforward to derive the
clauses (1) used by the solver. However, at least n2 bits are
needed to represent the coefficients in (2), while the repre-
sentation of (1) scales linearly with n. This means that proof
generation incurs a linear overhead compared to solving.
Also, the algorithm by Anders, Brenner, and Rattan (2024)
can break a symmetry in quasi-linear time measured in the
number of variables k remapped by the symmetry, which in-
troduces yet another asymptotic slowdown in proof genera-
tion if k ≪ n. Furthermore, the exponentially growing inte-
ger coefficients in (2) require expensive arbitrary-precision
arithmetic, which slows down proof checking. All of these
problems combine to make the proof logging approach pro-
posed by Bogaerts et al. (2023) infeasible for large-scale
problems requiring non-trivial symmetry breaking.

In this work, we present an asymptotically faster method
for generating and checking proofs of correctness for sym-
metry breaking. The main new technical idea is to use auxil-
iary variables to encode the lexicographic order used for the
dominance reasoning, similar to the clausal encoding in (1).
Unfortunately, this breaks the fundamental invariant of Bo-
gaerts et al. (2023) that all low-level proofs should be impli-
cational. When one needs to prove that a symmetry-breaking
constraint respects lexicographical order, the encoding of
this order will contain auxiliary variables that are not men-
tioned in the premises, and so this property cannot possibly
be implied. We therefore need to make a substantial redesign
of the proof system of Bogaerts et al. (2023) to work with
auxiliary variables. Very briefly, our key technical twist is
to split the encoding of the order into two parts, putting one
part into the premises, so that the property of implicational
low-level proofs can be maintained. Our redesigned proof
system supports fully general symmetry breaking in a simi-
lar fashion to Bogaerts et al. (2023), but is significantly more
efficient. Specifically, we prove that our approach leads to
asymptotic gains for proof logging and checking for sym-
metry breaking by at least a linear factor in the size n of the
lexicographic order used.

We have implemented support for our new proof system
in the proof checker VERIPB (Bogaerts et al. 2023; Gocht
and Nordström 2021; Gocht 2022) with its formally verified
backend CAKEPB (Gocht et al. 2024). Together, these yield
an efficient, end-to-end verified proof checking toolchain for

symmetry breaking proofs. We have also enhanced the state-
of-the-art SAT symmetry breaker SATSUMA (Anders, Bren-
ner, and Rattan 2024) to generate proofs of correctness in
our new format as well as that of Bogaerts et al. (2023) for
a comparative evaluation of performance. Our experimen-
tal findings match our theoretical results and show that only
a constant overhead in running time is required for proof
logging with our new method. Proof checking performance
is also vastly better compared to Bogaerts et al. (2023), al-
though here there might be room for further improvements.

Our paper is organized as follows. After reviewing pre-
liminaries in Section 2, we present our new proof logging
system in Section 3. Sections 4 and 5 discuss how proof log-
ging and checking can be improved asymptotically using our
new method, which is confirmed by our experiments in Sec-
tion 6. We conclude with a brief discussion of future work
in Section 7. Further details, proofs, and a worked-out ex-
ample can be found in the full-length version.

2 Preliminaries
We start with a brief review of pseudo-Boolean reasoning.
For more details, we refer the reader to, e.g., Buss and Nord-
ström (2021) or Bogaerts et al. (2023). A Boolean variable
takes values 0 or 1. A literal over a Boolean variable x is
x itself or its negation x = 1− x. A pseudo-Boolean (PB)
constraint C is an integer linear inequality over literals

C .
= ∑i aiℓi ≥ A , (3)

where we use .
= to denote syntactic equivalence. With-

out loss of generality the coefficients ai and the right-hand
side A are non-negative and the literals ℓi are over distinct
variables. The trivially false constraint is ⊥ .

= 0 ≥ 1. The
negation ¬C of the pseudo-Boolean constraint C in (3) is
the pseudo-Boolean constraint ¬C .

= ∑i aiℓi ≥ ∑i ai −A+1.
A pseudo-Boolean formula F is a conjunction F .

=
∧

i Ci
or equivalently a set F .

=
⋃

i{Ci} of pseudo-Boolean con-
straints Ci, whichever view is more convenient. A (dis-
junctive) clause

∨
i ℓi is equivalent to the pseudo-Boolean

constraint ∑i ℓi ≥ 1. Hence, formulas in conjunctive normal
form (CNF) are special cases of pseudo-Boolean formulas.

An assignment is a function mapping from Boolean vari-
ables to {0,1}. Substitutions (or witnesses) generalize as-
signments by allowing variables to be mapped to literals,
too. A substitution ω is extended to literals by ω(x) = ω(x),
and to preserve truth values, i.e., ω(0) = 0 and ω(1) = 1.
For a substitution ω , the support supp(ω) is the set of vari-
ables x where ω(x) ̸= x. A substitution α can be com-
posed with another substitution ω by applying ω first and
then α , i.e., (α ◦ ω)(x) = α(ω(x)). Applying a substitu-
tion ω to the pseudo-Boolean constraint C in (3) yields the
pseudo-Boolean constraint C↾ω

.
= ∑i aiω(ℓi)≥ A. This is ex-

tended to formulas by defining F↾ω

.
=

∧
i Ci↾ω . The pseudo-

Boolean constraint C is satisfied by an assignment ω if
∑i:ω(ℓi)=1 ai ≥ A. A pseudo-Boolean formula F is satisfied
by ω if ω satisfies every constraint in F . If there is no as-
signment that satisfies F , then F is unsatisfiable.

We use the notation F (⃗x) to stress that the formula is de-
fined over the list of variables x⃗ = x1, . . . ,xn, where we syn-
tactically highlight a partitioning of the list of variables by



writing F (⃗y,⃗z) or F (⃗a,⃗b, c⃗) meaning x⃗= y⃗,⃗z or x⃗= a⃗,⃗b, c⃗, re-
spectively (denoting concatenation of the lists of variables).
To apply a substitution ω element-wise to a list of literals we
write ℓ⃗↾ω= ω(ℓ1), . . . ,ω(ℓn). For a formula F (⃗x) and a list
of literals and truth values y⃗ = y1, . . . ,yn, the notation F (⃗y) is
syntactic sugar for F↾ω with the implicitly defined substitu-
tion ω(xi) = yi for i = 1, . . . ,n. Finally, we write var(F) for
the set of variables in a formula F .

2.1 The VERIPB Proof System
The proof system introduced by Bogaerts et al. (2023)
(which we will refer to as the original system) can prove
optimal values for optimization problems (F, f ), where F is
a pseudo-Boolean formula, and f is an integer linear objec-
tive function over literals to be minimized subject to satis-
fying F . The satisfiability (SAT) problem is a special case
by having f = 0 and F being a CNF formula. Proving the
unsatisfiability of F then corresponds to proving that ∞ is a
lower bound for (F, f ). For clarity of exposition, we focus
on decision problems, i.e., problems with objective function
f = 0, but the results can easily be extended to optimization
problems as in Bogaerts et al. (2023).

A proof in this proof system consists of a sequence of
rule applications, each deriving a new constraint. For impli-
cational reasoning, the cutting planes proof system (Cook,
Coullard, and Turán 1987) is used, which provides sound
reasoning rules to derive pseudo-Boolean constraints im-
plied by a pseudo-Boolean formula F , e.g., taking positive
integer linear combinations or dividing by an integer and
rounding up. We write F ⊢C if there is a cutting planes proof
deriving C from F . A set of constraints F ′ is derivable from
another set F , denoted by F ⊢ F ′, if F ⊢C for all C ∈ F ′.

The proof system also has rules for deriving constraints
which are not implied. To do this, the original system keeps
track of two pseudo-Boolean formulas (i.e., sets of con-
straints), called core C and derived D , which Järvisalo,
Heule, and Biere (2012) call irredundant and redundant
clauses, respectively. In addition, we need a pseudo-Boolean
formula O⪯(⃗u, v⃗), encoding a preorder, i.e., a reflexive and
transitive relation. This preorder is used to compare assign-
ments α,β over the literals in a list z⃗ and we write α ⪯ β if
O⪯(⃗z↾α ,⃗z↾β ) evaluates to true. For a preorder ⪯, we define
the strict order ≺ such that α ≺ β holds if α ⪯ β and β ̸⪯ α .

We call the tuple (C ,D ,O⪯ ,⃗z) a configuration. Formally,
proof rules incrementally modify the configuration. To han-
dle optimization problems, the configuration of Bogaerts
et al. (2023) also contains the current upper bound on f ,
which we can omit for decision problems.

The proof system maintains two invariants: (1) C is satis-
fiable if F is satisfiable, and (2) for any assignments α satis-
fying C there exists an assignment α ′ satisfying C , D , and
α ′ ⪯ α . Starting with the configuration (F, /0, /0, /0), any valid
derivation of a configuration (C ,D ,O⪯ ,⃗z) with ⊥ ∈ C ∪D
proves that F is unsatisfiable.

Proof Rules. We list the satisfiability version of the proof
rules from Bogaerts et al. (2023) our work modifies; all other
rules in the original proof system remain unchanged.

• The redundance-based strengthening rule (or re-
dundance rule for short) allows transitioning from
(C ,D ,O⪯ ,⃗z) to (C ,D ∪{C},O⪯ ,⃗z) if a substitution ω

and cutting planes proofs are provided showing that

C ∪D ∪{¬C} ⊢ (C ∪D ∪{C})↾ω ∪O⪯(⃗z↾ω ,⃗z) . (4)

• The dominance-based strengthening rule (or dominance
rule for short) allows transitioning from (C ,D ,O⪯ ,⃗z) to
(C ,D∪{C},O⪯ ,⃗z) if a substitution ω and cutting planes
proofs are provided showing that

C ∪D ∪{¬C} ⊢ C ↾ω ∪O⪯(⃗z↾ω ,⃗z) (5)
C ∪D ∪{¬C}∪O⪯(⃗z,⃗z↾ω) ⊢ ⊥ . (6)

We now briefly explain why the redundance rule preserves
the second invariant. Let α be an assignment satisfying C .
Since the invariant holds for (C ,D ,O⪯ ,⃗z), there exists an
assignment α ′ satisfying C ∪D and α ′ ⪯α . If α ′ happens to
satisfy C, we are done. Otherwise, the derivation (4) guaran-
tees that α ′ ◦ω satisfies C ∪D ∪{C} and O⪯(⃗z↾α ′◦ω ,⃗z↾α ′),
i.e., α ′ ◦ω ⪯ α ′. By transitivity we get α ′ ◦ω ⪯ α . For the
dominance rule, α ′ might have to be composed with ω re-
peatedly, but the process is guaranteed to eventually satisfy
C, since the composed assignment strictly decreases with re-
spect to the order, which is encoded by (6).

Preorders. Before using a preorder O⪯, it needs to be
proven within the proof system that O⪯ is indeed reflexive
and transitive. For this, the original system requires cutting
planes proofs for /0 ⊢ O⪯(⃗u, u⃗) and O⪯(⃗u, v⃗)∪O⪯(⃗v, w⃗) ⊢
O⪯(⃗u, w⃗), where w⃗ is of the same size as u⃗ and v⃗.

2.2 Symmetry Breaking
We briefly review symmetry breaking as it is used in prac-
tice, which we want to certify. Typically, symmetry breaking
considers permutations σ between literals with σ(ℓ) = σ(ℓ)
for all literals ℓ, and finite support supp(σ). Practical sym-
metry breaking algorithms only detect syntactic symmetries
of a formula F , i.e., permutations σ with F↾σ

.
= F .

To encode an ordering of assignments, typically the lex-
leader constraint is used. Let S be a set of detected sym-
metries in a formula F , and z1, . . . ,zn be variables with
supp(σ) ⊆ {z1, . . . ,zn} for all σ ∈ S. Then we define the
lexicographic order ⪯lex over assignments α,β and the lex-
leader constraint Bσ for a symmetry σ ∈ S as

α ⪯lex β iff ∑
n
i=1 2n−i

α(zi)≤ ∑
n
i=1 2n−i

β (zi) (7)

Bσ

.
= ∑

n
i=1 2n−i(σ(xi)− xi)≥ 0 . (8)

Intuitively, (8) constrains assignments to be smaller w.r.t. the
preorder in (7) than their symmetric counterpart. Symmetry
breaking introduces the constraints Bσ for σ ∈ S such that if
F is satisfiable, then F ∪

⋃
σ∈S Bσ is satisfiable.

When doing proof logging for symmetry breaking, the
dominance rule in the original system can derive the lex-
leader constraints Bσ as follows. Suppose that the symme-
try breaker detect symmetries σ1, . . . ,σm of C . To log these
symmetries, we use the order defined by

O⪯lex (⃗x, y⃗) =
{
∑

n
i=1 2n−i(yi − xi)≥ 0

}
. (9)



To add a constraint Bσi to D , we use the dominance rule
with witness σi. The application of this rule is justified by
C ⊢ C ↾σi (trivial, because σi is a symmetry of C ), and the
fact that ¬Bσi implies both O⪯lex (⃗z↾σi ,⃗z) and ¬O⪯lex (⃗z,⃗z↾σi).

When using symmetry breaking for the SAT problem, the
symmetry breaker instead encodes x⃗ ⪯lex σ (⃗x) as the clauses

s1 + x1 ≥ 1 , si+1 + si + xi+1 ≥ 1 , (10a)
s1 +σ(x1)≥ 1 , si+1 + si +σ(xi+1)≥ 1 , (10b)
σ(x1)+ x1 ≥ 1 , si +σ(xi+1)+ xi+1 ≥ 1 , (10c)

where si encodes that (x1, . . . ,xi) = (σ(x1), . . . ,σ(xi)).
These clauses can be derived from (8) using redundance.

3 Strengthening with Auxiliary Variables
While the method presented in Section 2.2 enables proof
logging for symmetry breaking, encoding the coefficients
in (8) and (9) grows quadratically in the size of z⃗, which
often includes all variables in the formula, making proof
logging for large symmetries infeasible in practice. For
proof checking, the situation is even more dire, as the proof
checker has to reason internally with arbitrary-precision in-
teger arithmetic to handle the coefficients in (8) and (9).

One way to avoid these big integers would be to repre-
sent the order as a set of clauses as in Equation (10a)–(10c),
using a list of extension variables s⃗. However, this leads to
challenges when defining the actual preorder ⪯. For an or-
der without extension variables, we define α ⪯ β to hold if
O⪯(⃗z↾α ,⃗z↾β ) is true. However, for a formula O⪯(⃗x, y⃗, s⃗) con-
taining extension variables s⃗ this does not work, since the
variables s⃗ in O⪯(⃗z↾α ,⃗z↾β , s⃗) are unassigned and in general
O⪯(⃗z↾α ,⃗z↾β , s⃗) will not hold for all assignments to s⃗.

Instead, what we are trying to capture is that α ⪯ β holds
precisely when O⪯(⃗z↾α ,⃗z↾β , s⃗) holds, provided that the ex-
tension variables s⃗ are set in the right way. Equivalently, we
want to say that α ⪯ β holds precisely when there exists an
assignment ρ to s⃗ such that O⪯(⃗z↾α ,⃗z↾β , s⃗↾ρ) holds.

However, just adding extension variables to the proof
obligations O⪯(⃗z↾ω ,⃗z) in the redundance and dominance
rules would not work. What we would need to show is that
some assignment to s⃗ exists such that O⪯(⃗z↾ω ,⃗z, s⃗) holds, but
the proof system cannot express existential quantification.
While the proof rules could specify the value of all exten-
sion variables s⃗, this would be very cumbersome. However,
in all applications we have in mind, the preorder with exten-
sion variables already contains the information how to set
the extension variables s⃗, since the extension variables are
defined (functionally) in terms of the other variables.

To make this precise, let S⪯(⃗x, y⃗, s⃗) be a definition of s⃗
in terms of the other variables (i.e., each assignment to the
x⃗ and y⃗ can uniquely be extended to an assignment to s⃗ that
satisfies S⪯(⃗x, y⃗, s⃗)). We now redefine ⪯ such that α ⪯ β

holds precisely when there exists an assignment ρ to s⃗ such
that S⪯(⃗z↾α ,⃗z↾β , s⃗↾ρ)∧O⪯(⃗z↾α ,⃗z↾β , s⃗↾ρ) holds.

In this case, whenever we need to show that α ⪯ β , be-
cause of the definitional nature of S⪯ we can assume that
S⪯(⃗z↾α ,⃗z↾β , s⃗↾ρ) holds and derive O⪯(⃗z↾α ,⃗z↾β , s⃗↾ρ) from
this, thereby completely eliminating the need for providing
an assignment to s⃗ in every rule application. In our actual

proof system, we relax the condition that S⪯ is definitional
slightly, but intuitively, S⪯ is best thought of as a circuit
defining the value of s⃗ in terms of the other variables.

An important restriction for this to be sound is that the
extension variables s⃗ in the preorder, which we call auxiliary
variables, do not appear outside the preorder.

We now formalize this. As mentioned in Section 2.1, we
focus on decision problems.

3.1 Specifications
Let a⃗ be a list of variables. A pseudo-Boolean formula
S (⃗x, a⃗) is a specification over the variables a⃗, if it is deriv-
able from the empty formula /0 by the redundance rule,
where each application only witnesses over variables in a⃗.
Definition 1. A formula S (⃗x, a⃗) = {C1,C2, . . . ,Cn} is a
specification over the variables a⃗, if there is a list

(C1,ω1),(C2,ω2), . . . ,(Cn,ωn)

which satisfies the following:
1. The constraint C1 can be obtained from the empty for-

mula /0 using the redundance rule with witness ω1.
2. For each i ∈ {2, . . . ,n} we have that Ci can be added by

the redundance rule to
⋃i−1

j=1{C j} with the witness ωi.
3. For every witness ωi, supp(ωi)⊆ a⃗ holds.

A crucial property of specifications is that we can recover
an assignment of the auxiliary variables from the assignment
of the non-auxiliary variables. We state this property below.
Lemma 1. Let S (⃗x, a⃗) be a specification over a⃗. Let α be
any assignment of the variables x⃗. Then, α can be extended
to an assignment α ′, such that
1. α ′ satisfies S , and
2. α(x) = α ′(x) holds for every x ∈ x⃗.

To explain why Lemma 1 holds, recall from Section 2.1
that the redundance rule satisfies the following: if a con-
straint C is added by redundance with witness ω , then given
an assignment α satisfying all other constraints, either α or
α ◦ω also satisfies C. Hence, defining α ′ by composing α

with the witnesses ωi corresponding to the constraints that
do not already hold ensures that α ′ satisfies S , and the fact
that each witness ωi is the identity on x⃗ (since supp(ωi)⊆ a⃗)
ensures that α(x) = α ′(x) for x ∈ x⃗.

3.2 Orders with Auxiliary Variables
Next, we explain how two pseudo-Boolean formulas
O⪯(⃗u, v⃗, a⃗) and S⪯(⃗u, v⃗, a⃗), together with the two disjoint
lists of variables z⃗ and a⃗, define a preorder.
Definition 2. Let u⃗ and v⃗ be disjoint lists of variables of
size n and let a⃗ be a list of auxiliary variables. Let O⪯(⃗u, v⃗, a⃗)
and S⪯(⃗u, v⃗, a⃗) be two pseudo-Boolean formulas such that
S⪯ is a specification over a⃗.

Then we define the relation ⪯ over the domain of total
assignments to a list of variables z⃗ of size n as follows: For
assignments α,β we let α ⪯ β hold, if and only if there
exists an assignment ρ to the variables a⃗, such that

S⪯(⃗z↾α ,⃗z↾β , a⃗↾ρ)∧O⪯(⃗z↾α ,⃗z↾β , a⃗↾ρ)

evaluates to true.



To ensure that O⪯ and S⪯ actually define a preorder,
we require cutting planes proofs that show reflexivity, i.e.,
/0 ⊢ α ⪯ α , and transitivity, i.e., α ⪯ β ∧β ⪯ γ ⊢ α ⪯ γ . To
write these proof obligations using the cutting planes proof
system, which cannot handle an existentially quantified con-
clusion, we can use the specification as a premise. The speci-
fication premise essentially tells us which auxiliary variables
the existential quantifier should pick. In particular, for re-
flexivity, the proof obligation is

S⪯(⃗x, x⃗, a⃗) ⊢ O⪯(⃗x, x⃗, a⃗) . (11)

For transitivity, the proof obligation is

S⪯(⃗x, y⃗, a⃗)∪O⪯(⃗x, y⃗, a⃗)∪S⪯(⃗y,⃗z,⃗b)

∪O⪯(⃗y,⃗z,⃗b)∪S⪯(⃗x,⃗z, c⃗) ⊢ O⪯(⃗x,⃗z, c⃗) .
(12)

Intuitively, (12) says that if the circuits defining the aux-
iliary variables are correctly evaluated, which is encoded
by the premises S⪯(⃗x, y⃗, a⃗)∪S⪯(⃗y,⃗z,⃗b)∪S⪯(⃗x,⃗z, c⃗), then
transitivity should hold, i.e., O⪯(⃗x, y⃗, a⃗) ∪ O⪯(⃗y,⃗z,⃗b) ⊢
O⪯(⃗x,⃗z, c⃗). However, if the auxiliary variables are not cor-
rectly set, then no claims are made.

These proof obligations ensure that ⪯ is a preorder:

Lemma 2. If O⪯ and S⪯ satisfy Equations (11) and (12),
then ⪯ as defined by O⪯ and S⪯ is a preorder.

3.3 Validity
We extend the configurations of the proof system to
(C ,D ,O⪯,S⪯ ,⃗z, a⃗). In particular, we extend the notion of
weak-(F, f )-validity from Bogaerts et al. (2023) to our new
configurations, focusing on decision problems:

Definition 3. A configuration (C ,D ,O⪯,S⪯ ,⃗z, a⃗) is
weakly F-valid if the following conditions hold:

1. If F is satisfiable, then C is satisfiable.
2. For every assignment α satisfying C , there exists an as-

signment α ′ satisfying C ∪D and α ′ ⪯ α .

In the following, we furthermore assume that for any con-
figuration (C ,D ,O⪯,S⪯ ,⃗z, a⃗), the following hold:

1. O⪯ and S⪯ refer to formulas for which Equations (11)
and (12) have been successfully proven.

2. S⪯ is a specification over a⃗.
3. The variables a⃗ only occur in O⪯ and S⪯, and these vari-

ables are disjoint from z⃗.

Observe that due to these invariants, satisfying assign-
ments for C ∪D do not need to assign the variables a⃗. In
the following, we assume that such assignments are indeed
defined only over the domain var(C ∪D).

3.4 Dominance-Based Strengthening Rule
As in the original system, the dominance rule allows adding
a constraint C to the derived set using witness ω if from
the premises C ∪D ∪{¬C} we can derive C ↾ω and show
that α ◦ω ≺ α holds for all assignments α satisfying C ∪
D ∪{¬C}. To show α ◦ω ≺ α , we separately show that α ◦
ω ⪯ α and α ̸⪯ α ◦ω . To show that α ◦ω ⪯ α , we have

to show that O⪯(⃗z↾ω ,⃗z, a⃗), assuming that the circuit defining
the auxiliary variables a⃗ has been evaluated correctly, which
is encoded by the specification S⪯(⃗z↾ω ,⃗z, a⃗). This leads to
the proof obligation

C ∪D ∪{¬C}∪S⪯(⃗z↾ω ,⃗z, a⃗) ⊢ O⪯(⃗z↾ω ,⃗z, a⃗) . (13)

To show that α ̸⪯α ◦ω , we have to show that ¬O⪯(⃗z,⃗z↾ω , a⃗)
assuming S⪯(⃗z,⃗z↾ω , a⃗). However, since ¬O⪯(⃗z,⃗z↾ω , a⃗) is
not necessarily a pseudo-Boolean formula (due to the nega-
tion), we instead show that we can derive contradiction from
O⪯(⃗z,⃗z↾ω , a⃗), leading to the proof obligation:

C ∪D ∪{¬C}∪S⪯(⃗z,⃗z↾ω , a⃗)∪O⪯(⃗z,⃗z↾ω , a⃗) ⊢ ⊥ . (14)

The following lemma shows that these proof obligations in-
deed imply α ◦ω ⪯ α and α ̸⪯ α ◦ω , respectively:
Lemma 3. Let G be a formula and ω a witness with
supp(ω)⊆ var(G). Furthermore, let a⃗∩var(G) = /0 and S⪯
be a specification over a⃗. Also, let O⪯ and S⪯ define a pre-
order ⪯. Then the following hold:
1. If G∪S⪯(⃗z↾ω ,⃗z, a⃗) ⊢ O⪯(⃗z↾ω ,⃗z, a⃗) holds, then for each

assignment α satisfying G, α ◦ω ⪯ α holds.
2. If G∪S⪯(⃗z,⃗z↾ω , a⃗)∪O⪯(⃗z,⃗z↾ω , a⃗) ⊢ ⊥ holds, then for

each assignment α satisfying G, α ̸⪯ α ◦ω holds.

Hence, we define the dominance rule as follows:
Definition 4 (Dominance-based strengthening with spec-
ification). We can transition from the configuration
(C ,D ,O⪯,S⪯ ,⃗z, a⃗) to (C ,D ∪{C},O⪯,S⪯ ,⃗z, a⃗) using the
dominance rule if the following conditions are met:
1. The constraint C does not contain variables in a⃗.
2. There is a witness ω for which image(ω)∩ a⃗ = /0 holds.
3. We have cutting planes proofs for the following:

C ∪D ∪{¬C}∪S⪯(⃗z↾ω ,⃗z, a⃗) ⊢ C ↾ω ∪O⪯(⃗z↾ω ,⃗z, a⃗) (15)
C ∪D ∪{¬C}∪S⪯(⃗z,⃗z↾ω , a⃗)∪O⪯(⃗z,⃗z↾ω , a⃗) ⊢ ⊥ . (16)

Using Lemma 3, we can show that the dominance rule
preserves the invariants required by weak F-validity:
Lemma 4. If we can transition from (C ,D ,O⪯,S⪯ ,⃗z, a⃗)
to (C ,D ∪ {C},O⪯,S⪯ ,⃗z, a⃗) by the dominance rule, and
(C ,D ,O⪯,S⪯ ,⃗z, a⃗) is weakly F-valid, then the configura-
tion (C ,D ∪{C},O⪯,S⪯ ,⃗z, a⃗) is also weakly F-valid.

3.5 Redundance-Based Strengthening Rule
We also modify the redundance rule to work in our extended
proof system. Similarly to the dominance rule, we can use
S⪯(⃗z↾ω ,⃗z, a⃗) as an extra premise in our proof obligations.
Definition 5 (Redundance-based strengthening with spec-
ification). We can transition from the configuration
(C ,D ,O⪯,S⪯ ,⃗z, a⃗) to (C ,D ∪{C},O⪯,S⪯ ,⃗z, a⃗) using the
redundance rule if the following conditions are met:
1. The constraint C does not contain variables in a⃗.
2. There is a witness ω for which image(ω)∩ a⃗ = /0 holds.
3. We have cutting planes proof that the following holds:

C ∪D ∪{¬C}∪S⪯(⃗z↾ω ,⃗z, a⃗)
⊢ (C ∪D ∪{C})↾ω ∪O⪯(⃗z↾ω ,⃗z, a⃗) .

(17)



The redundance rule preserves weak F-validity:

Lemma 5. If we can transition from (C ,D ,O⪯,S⪯ ,⃗z, a⃗)
to (C ,D ∪ {C},O⪯,S⪯ ,⃗z, a⃗) by the redundance rule, and
(C ,D ,O⪯,S⪯ ,⃗z, a⃗) is weakly F-valid, then the configura-
tion (C ,D ∪{C},O⪯,S⪯ ,⃗z, a⃗) is also weakly F-valid.

4 Efficient Proof Logging in SATSUMA
Using our extended proof system, we implement proof log-
ging in the state-of-the-art symmetry breaker SATSUMA1.
Like in the original system (as explained in Section 2.2),
the (negation of the) symmetry breaking constraints can be
used to show the proof obligations for the order. However,
in the extended system this is more complicated, because we
need to relate two different sets of extension variables (those
in the symmetry breaking constraints and the auxiliary vari-
ables in the specification).

Our new method achieves an asymptotic speedup over the
old method. Defining the lexicographical order over n vari-
ables can be done in time O(n) with our new method (for
both checking and logging), while the old method requires
time O(n2). Breaking a symmetry σ over k = |supp(σ)|
variables (k ≤ n) takes time O(k) for logging and O(n) for
checking with our new method, while the old method re-
quires time O(nk) for logging and time O(n2 + nk2) for
checking. Therefore, the new method is in each case asymp-
totically at least a factor n faster for both logging and check-
ing than the old method used by Bogaerts et al. (2023).

5 Proof Checker Implementation
We implemented checking for our extended proof system in
the proof checker VERIPB2 and the formally verified proof
checker CAKEPB3. Several optimizations are necessary to
handle orders with many specification constraints efficiently.

Lazy Constraint Loading and Evaluation. When check-
ing cutting planes derivations for the dominance or redun-
dance rule (15)–(17), the proof checkers load the specifica-
tion constraints from S⪯ only when they are used in the
proof. More specifically, the constraints in S⪯ are not even
computed until loaded explicitly, which improves the check-
ing performance by a linear factor if the specification S⪯ is
not required for a cutting planes derivation.

Implicit Reflexivity Proof. Since the loaded order is al-
ways proven to be reflexive (11), the cutting planes deriva-
tion for O⪯(⃗z↾ω ,⃗z, a⃗) can be skipped for the redundance rule
(17) if the domain of the witness ω does not contain a vari-
able in z⃗. Requiring an explicit cutting planes derivation for
O⪯(⃗z↾ω ,⃗z, a⃗) would again involve computation over all con-
straints in the specification S⪯, which incurs a linear over-
head for proof logging and checking.

Formal Verification. We updated CAKEPB in two
phases, yielding the same end-to-end verification guarantees
for proof checking as discussed in Gocht et al. (2024). First,

1SATSUMA code: https://doi.org/10.5281/zenodo.17607863
2VERIPB code: https://doi.org/10.5281/zenodo.17608873
3CAKEPB code: https://doi.org/10.5281/zenodo.17609070

we formally verified soundness of all updates to the proof
system (including Lemmas 1–5). Second, we implemented
and verified these changes in the CAKEPB codebase, includ-
ing soundness for the optimizations described above.

6 Experimental Evaluation
From the analysis in Section 4, we know that our new proof
system is asymptotically better in theory. We now show that
it indeed enables much faster proof logging and checking in
practice, on both crafted and real-world problem instances.
The experiments in this section are performed on machines
with dual AMD EPYC 7643 processors, 2TBytes of RAM,
and local solid state hard drives, running Ubuntu 22.04.2.
We limit each individual process to 32GBytes RAM, and
run up to 16 processes in parallel (having checked that this
does not make a measurable difference to runtimes). We give
SATSUMA a time limit of 1,000s per instance, and VERIPB
and CAKEPB 10,000s. We remark that runtimes involving
writing proofs are often bound by disk I/O performance;
nevertheless, our general experimental trends are valid. In
each case, when we run VERIPB, we run it in elaboration
mode. This means that, in addition to checking a proof, it
also outputs a simplified proof that is suitable for giving to
CAKEPB. This also means that any instance that fails for
VERIPB due to limits cannot be run through CAKEPB.

The aim of our experiments is not to determine whether
symmetry breaking is a good idea, or how it should be done.
Indeed, SATSUMA produces the same CNF (modulo a po-
tential sorting of the constraints) regardless of whether it is
outputting proofs using the old method or the new method,
or not outputting proofs at all. Thus, we limit our experi-
ments to checking that the proofs produced by SATSUMA
are in fact valid, rather than reporting times for checking the
entire solving process. This allows us to precisely measure
the effects of our changes.

We perform experiments across two sets of instances, with
different purposes. Our first set consists of five families of
crafted benchmarks which have well-understood symme-
tries, generated using CNFGEN (Lauria et al. 2017). We note
that the number of variables grows quadratically or cubically
in the instance size.

We show the results in Figure 1. For each of the five fam-
ilies, on the top row we plot the time needed to run SAT-
SUMA to produce symmetry breaking constraints, without
proof logging and with both kinds of proof logging enabled.
In each case, the new method scales similarly to not doing
proof logging, although there is a cost to be paid to output
the proofs to disk. However, particularly for the PHP and
RPHP families, it is clear that even writing the proofs is both
asymptotically and practically much more expensive using
the old method. On the bottom row of the figure, we plot the
checking times. We see much better scaling from the new
method in all five cases. Formally verified proof checking
using CAKEPB is slightly slower than with VERIPB, which
is not surprising—for the families where CAKEPB’s curve
stops on smaller instances, this is due to CAKEPB hitting
memory limits when VERIPB did not. The new method is
particularly helpful for CAKEPB as its formally verified ar-
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Figure 1: On top, the cost of running SATSUMA with or without proof logging, on crafted benchmark instances, as the instance
size grows. In each case logging with the new method scales similarly to not doing logging, whilst the old method exhibits
worse scaling for several families. On the bottom, the cost of checking these proofs: the new method exhibits better scaling.
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Figure 2: On the left, the cumulative number of “interesting” SAT competition instances broken, logged, and checked over time.
The centre plot compares the added cost of writing proofs with the old and new methods, compared to not writing proofs; 52
instances reached time or memory limits with the old method. The right-hand plot compares the cost of checking proofs using
the old and new methods, with points below the diagonal line showing where both methods succeeded but the new method was
faster; additionally, 8 and 30 instances reach limits with VERIPB and CAKEPB respectively with the new method where the
old method succeeded, compared to 95 and 97 respectively with the old method where the new method succeeded.

bitrary precision arithmetic library is known to be less effi-
cient than other (unverified) libraries (Tan et al. 2019).

Our second set of instances are taken from the SAT com-
petition (Iser and Jabs 2024). Because we are only inter-
ested in instances where we can measure something inter-
esting about symmetry breaking, we selected the 982 in-
stances from the main competition tracks from 2020 to 2024
where SATSUMA was able to run to completion and iden-
tify at least one symmetry. In the left-hand plot of Figure 2,
we show the cumulative number of instances successfully
logged or checked over time. The leftmost (“best”) curve is
to run SATSUMA with no proof logging, and this is closely
followed by running SATSUMA with proof logging using the
new method, where we could produce proofs for all 982 in-
stances. When producing proofs using the old method, in
contrast, we were only able to produce proofs for 930 in-
stances before limits were reached. We were able to check

the correctness of the symmetry breaking constraints for the
new method for 893 instances (799 with CAKEPB), and with
the old method for only 806 instances (732 with CAKEPB).
The two scatter plots in the figure give a more detailed com-
parison of the added cost of running SATSUMA with proof-
logging enabled, and comparing the checking costs of the
old and new proof methods. In both cases it is clear that the
new method is never more than a small constant factor worse
than the old method, and that it is often many orders of mag-
nitude faster.

7 Concluding Remarks
We have presented a substantial redesign of the VERIPB
proof system (Bogaerts et al. 2023; Gocht and Nordström
2021; Gocht 2022) in order to support faster certified sym-
metry breaking. Central to our redesign is support for using
auxiliary variables to encode ordering constraints over as-



signments. Theoretically, the use of orders with auxiliary
variables allows us to avoid encoding lexicographical or-
ders using big integers, that are prohibitive for problems
with large symmetries; this improves on the previous state-
of-the-art proof logging approach (Bogaerts et al. 2023)
by at least a linear factor. To evaluate this in practice, we
implemented proof logging using our new method in the
state-of-the-art symmetry breaking tool SATSUMA (Anders,
Brenner, and Rattan 2024), and proof checking for our ex-
tended system in VERIPB and the formally verified checker
CAKEPB (Gocht et al. 2024); our experimental evaluation
shows orders-of-magnitude improvement for proof logging
and checking compared to the old approach.

Although proof logging is now asymptotically as fast as
symmetry breaking, enabling proof logging can still incur a
constant factor overhead. However, improving this would be
mostly an engineering effort—we are already able to pro-
duce proofs for all of our benchmark instances within rea-
sonable time. Checking the proof can still be asymptotically
slower than symmetry breaking in theory, which leaves room
to significantly improve the performance of proof checking
for symmetry breaking. The key challenge here is that the
proof checker currently has to reason about all variables in
the order for each symmetry broken, while the symmetry
breaker does this once at a higher level. Future work could
investigate proof logging for conditional and dynamic sym-
metry breaking during search (Gent et al. 2005) or other
dynamic methods of exploiting symmetries (Devriendt, Bo-
gaerts, and Bruynooghe 2017), in contrast to the static sym-
metry breaking we presented here.
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