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Abstract

A constraint programming (CP) solver that implements proof
logging will output a machine-checkable certificate of cor-
rectness alongside any result it obtains. This is useful for
trusting claims of unsatisfiability or optimality, as well as
for debugging and auditing solver implementations. Proofs
can be constructed by having the solver log justifications for
each inference it makes, and previous work has shown that
many standard CP reasoning techniques can be efficiently jus-
tified using a pseudo-Boolean (PB) proof format. This paper
extends PB justifications to propagators enforcing bounds-
consistency on multiplication and division constraints. We
show that even though the proof system and checker oper-
ate only on linear inequalities over 0-1 variables, non-linear
reasoning over bounded domains can be efficiently expressed
as a sequence of PB proof steps. Additionally, we demon-
strate that bespoke proof logging for bounds-consistency al-
gorithms offers a clear advantage over constructing justifica-
tions by brute force.

Code — https://doi.org/10.5281/zenodo.14500848

1 Introduction
Constraint satisfaction problems (CSPs) are expressed in
terms of variables; possible domain values that can be as-
signed to each variable; and constraints determining which
assignments are simultaneously allowed in a solution. Many
important real-world challenges can be elegantly expressed
in this way (Wallace 1996; Falkner et al. 2016). The dis-
cipline of constraint programming (CP) has over the years
developed a range of sophisticated automated techniques for
finding or determining non-existence of solutions to a CSP,
as well as finding optimal solutions with respect to some ob-
jective function of the variables (Rossi, van Beek, and Walsh
2006; Lecoutre 2013).

If a CP solver asserts that its input problem is merely sat-
isfiable, it can easily “prove” this claim by providing a wit-
ness assignment, and this can always be efficiently checked
against the original constraints (Schaefer 1978). But if the
claim is unsatifiability of the problem, or optimality of a par-
ticular solution, it can be more challenging to trust it with a
high degree of certainty. Combinatorial solvers, as with all
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complex computer software, are prone to bugs (Akgün et al.
2018; Gillard, Schaus, and Deville 2019; Paxian and Biere
2023; Vanroose et al. 2024).

Adding proof logging to an algorithm is a powerful way
to increase trust in its answers and detect any incorrect re-
sults (McConnell et al. 2011). The idea is that while solv-
ing a problem, the program should log proof statements that
justify each reasoning step, and these statements in the end
form an efficiently checkable certificate of correctness for
the output. This approach has seen great success in the field
of Boolean satisfiability (SAT) solving (Heule 2021), and
more recently has begun to be applied in CP (Veksler and
Strichman 2010; Gocht, McCreesh, and Nordström 2022;
Flippo et al. 2024).

A key feature differentiating CP from SAT is the use of
constraint propagators, specialised for a variety of expres-
sive high-level constraints. These reduce variable domains
during search by eliminating values that can be inferred in-
feasible due to a particular constraint. Any proof logging ap-
proach for CP must consider how the inferences made by
these algorithms can be justified, which is a challenge since
they can enforce different levels of consistency on the vari-
ables and rely on a wide range of reasoning techniques.

We know already that for many important constraint
types, pseudo-Boolean (PB) proof steps can be used to jus-
tify their reasoning (Elffers et al. 2020; McIlree and Mc-
Creesh 2023; McIlree, McCreesh, and Nordström 2024).
Here, the input problem for the solver is first compiled to
a representation involving only 0-1 integer linear inequali-
ties (pseudo-Boolean constraints), and then native CP prop-
agators can log proof steps that make use of rules based on
the cutting planes proof system (Cook, Coullard, and Turán
1987) to derive justifications. The resulting proofs can then
be checked using the VeriPB proof checker (Bogaerts et al.
2023b), which has been effectively used for certification in
various combinatorial solving paradigms.

1.1 Our Contribution
In this work we show that PB reasoning can also be
used for justifying propagation of multiplication constraints:
X × Y = Z for CP variables X,Y, Z over integer domains.
This fundamental arithmetic operation appears in a wide va-
riety of problem instances, and can be used as an atomic
constraint in the decomposition of arbitrary polynomial re-



strictions (Apt and Zoeteweij 2004), as well as division and
modulo constraints. Aside from certain applications, such
as indexing into a multi-dimensional array, where stronger
domain-consistent pruning is desirable, ternary multiplica-
tion propagators generally enforce only bounds-consistency.
In a bounds-consistent propagator, upper and lower bounds
on domains of each variable are narrowed such that, for both
bound values, there exist real numbers within the bounds
of the other two variables where the multiplication rela-
tion holds. This corresponds to the bounds(R) consistency
definition given by Choi et al. (2006), which is the stan-
dard level of consistency enforced in state-of-the-art open
source solver implementations such as Gecode (Gecode
Team 2024) and Chuffed (Chu et al. 2024).

At first, it might appear that a fundamentally linear PB
proof system based on cutting planes would be ill-equipped
to handle such reasoning. But we are able to show that this is
not the case. By using a binary representation of the CP vari-
ables and some explicit proofs by contradiction, we can de-
rive justifications for any inference made by a bounds prop-
agator in a number of proof steps proportionate to the prod-
uct of the numbers of bits required to encode the domains
of X and Y . This includes handling negative domain values
through the use of a case-based derivation over the signs of
the variables.

These justifications are independent of any other reason-
ing in the proof, and so could be implemented either directly
as logging statements in the solver itself (Gocht, McCreesh,
and Nordström 2022), or in a later translation step from a
higher-level proof format (Flippo et al. 2024).

More broadly, we demonstrate for the first time that hav-
ing specialised bounds justifications for bounds-consistency
propagators is worthwhile. While it is possible to auto-
tabulate the solutions to any multiplication constraint and so
construct justifications for any domain-consistent inference
by “brute force” (Gocht, McCreesh, and Nordström 2022),
we show that our method offers a significant advantage over
this approach, both in terms of proof logging overhead and
verification time.

The remainder of this paper will be organised as follows:
after a review of essential preliminaries, we define a straight-
forward PB encoding of multiplication for positive domains
and show how to efficiently derive bounds on the product
variable based on bounds of the two multiplicands, relying
only on proof rules and the correctness of the inference and
not on propagation properties of the encoding. Next, we ex-
tend this encoding to a representation that allows multipli-
cation of two’s complement encoded variables and demon-
strate some important statements we can derive from this
encoding: this allows us to bring together our results into a
complete justification procedure. Finally, we briefly discuss
our implementation of the approach, and present some sim-
ple benchmarks comparing bounds-consistent proof logging
to auto-tabulation proofs.

2 Preliminaries
We will first devote some space to the proof format and
background on how PB proof logging for CP works. This

is necessarily a brief overview: we refer to Buss and Nord-
ström (2021) for more details on pseudo-Boolean reason-
ing; Bogaerts et al. (2023a) for the proof system underlying
VeriPB; and Gocht, McCreesh, and Nordström (2022) for
applying PB proof logging to CP.

2.1 Pseudo-Boolean Constraints
For our purposes, a pseudo-Boolean constraint is a linear in-
equality of the form

∑
i aiℓi ≥ b, where ai and b are integer

constants, and each ℓi is a literal: either a 0-1 variable xi

or its negation xi := 1− xi. When convenient, we will also
use x1 = x and x−1 = x, to denote literals. We can always
normalise a PB constraint, rearranging so that ai ≥ 0, b ≥ 0,
and all literals are over distinct variables. We call b the de-
gree of the constraint in this case. A PB formula is a set of
PB constraints. The formula alone specifies a constraint sat-
isfaction problem, or an optimisation problem if an objective∑

i ciℓi to minimise is provided.
Let C :=

∑
i aiℓi ≥ b be a (normalised) PB constraint.

We can obtain a native PB constraint representing its nega-
tion ¬C by normalising −

∑
i aiℓi ≥ −b + 1. Similarly,

for a set of literals L we have a native representation of the
reification of C by the conjunction of literals in L:

(∧L ⇒ C) :=
∑

y∈L bȳ +
∑

i aiℓi ≥ b. (1)

For a set of PB constraints we will also write ∧L ⇒ F for
the set of reified constraints {∧L ⇒ C : C ∈ F}, and for
single literal y we can write y ⇔ C as a shorthand for the
pair of constraints y ⇒ C and ȳ ⇒ ¬C.

An assignment is a (partial) function from PB variables to
{0, 1}; we extend an assignment ρ from variables to literals
in the natural way, (ρ(x̄) = 1− ρ(x)), and for literals ℓ over
variables x not in the domain of ρ, we use the convention
ρ(ℓ) = ℓ. For notational convenience, we can also view ρ as
the set of literals {ℓ : ρ(ℓ) = 1} assigned true by ρ. Applying
ρ to C yields

C↾ρ :=
∑

ℓi:ρ(ℓi)=ℓi
aiℓi ≥ A−

∑
ℓj∈ρ(ℓj)=1 aj (2)

substituting literals as specified by ρ. We extend this notation
to applying assignments to F : F↾ρ =

⋃
C∈F C↾ρ.

We say that a PB constraint C propagates a literal ℓ un-
der an assignment ρ if C↾ρ cannot be satisfied unless ℓ is
true. Unit propagation of a PB formula F is then the pro-
cess of starting with ρ = ∅, adding any literals propagated
by constraints in F↾ρ to ρ, and repeating until either no new
literals propagate or a constraint C↾ρ that cannot possibly be
satisfied (contradiction) is obtained.

2.2 Pseudo-Boolean Proofs
As stated, the proof system associated with the VeriPB proof
checker can be used to construct certificates via proof log-
ging for the results of various combinatorial solving algo-
rithms, including CP solvers based on backtracking search
and constraint propagation. It requires an input PB formula
which must truthfully specify the problem being solved, and
then the proof itself is a sequence of steps, where each
step derives a PB constraint from the input formula and
previously derived constraints via one of several efficiently



checkable proof rules. Adding constraints obtained using
these rules to the original formula is guaranteed to preserve
at least one (optimal) solution. Hence, if a proof concludes
by deriving a PB constraint such as 0 ≥ 1 which trivially has
no solutions (contradiction), the original problem has been
shown to be unsatisfiable. Certificates of optimality can be
created by additionally providing a witness assignment that
propagates to a complete solution, and then deriving con-
tradiction from a constraint that says that the objective value
must be better than the one achieved by the witness. We con-
sider the length of such derivations to be the number of proof
steps, or equivalently, the number of derived constraints.

We will now briefly discuss the rules required for the
present work, and refer the reader to Bogaerts et al. (2023a)
and (2023b) for a complete description of the proof system
and the associated machine-readable proof logging format.
For a given derivation where F is the set of constraints either
in the input formula or previously derived, we will use:

1. “Cutting planes” rules — we can derive: ℓ ≥ 0 for any
literal ℓ (literal axioms); the sum of two PB constraints
in F ; a positive scalar multiple of any PB constraint F ;
and the result of dividing a normalised PB constraint in F
through by a scalar and rounding up. The result of these
operations is implicitly normalised.

2. Saturation — for any normalised constraint
∑

i aiℓ ≥ b
in F we can derive

∑
i min(ai, b)ℓi ≥ b. This is often

viewed as an additional “cutting planes” rule.

3. Reverse Unit Propagation (RUP) — we can derive a con-
straint C if performing unit propagation on ¬C ∪ F re-
sults in a contradiction.

4. Explicit Contradiction — we can derive a constraint C
if we can provide a subproof deriving contradiction from
¬C ∪ F using any of the above rules.

5. Extension variable introduction — for a fresh PB variable
x not appearing in any constraint F , and any constraint
C, we can always introduce the pair of constraints x ⇒
C and x̄ ⇒ ¬C, i.e. x ⇔ C.

Note that items 4 and 5 above are in fact special cases of
VeriPB’s redundance-based strengthening rule, which we do
not require in its full generality in this work. We will how-
ever, make use of some other known shortcuts for construct-
ing derivations in certain forms.

Theorem 1. (Hooker 1992) For a set of literals L and PB
variable x we can derive ∧L ⇒ 0 ≥ 1 from ∧L ⇒ x ≥ 1
and ∧L ⇒ x̄ ≥ 1 in O(1) cutting planes steps. This is the
PB equivalent of the resolution rule for clauses.

Theorem 2. (Demirović et al. 2024) Let F be a PB formula,
ρ be a partial assignment, and suppose that from F↾ρ we
can derive a constraint D using a cutting planes and RUP
derivation of length n. Then we can construct a derivation
of length O(n) from F of the constraint ∧ρ ⇒ D.

Corollary 1. As a special case of Theorem 2, if we can
derive a constraint D from constraints C1 and C2 in n
steps, then we can derive in O(n) steps the constraint
∧(L1 ∪ L2) ⇒ D from ∧L1 ⇒ C1 and ∧L2 ⇒ C2.

2.3 Proof Logging for Constraint Programming
To implement pseudo-Boolean proof logging in a CP solver
that allows arbitrary finite domain variables, the solver’s in-
put problem must first be compiled to a PB format. This
encoding is only used for deriving subsequent justification
constraints and does not inform the native solving process.

It is straightforward to represent any CP variable X with
positive integer domain values in the range [l . . . u] as a se-
quence of PB bit variables x0, . . . , xn−1, where n is a suf-
ficient number of bits to represent any value in the domain
as a binary string. The value of X is then given by the PB
expression

∑n−1
i=0 2ixi. If X has negative domain values, an

additional bit xn can be used, and the PB variable sequence
represents a binary two’s complement number, evaluated as
−2nxn+

∑n−1
i=0 2ixi. We can also make use of auxiliary PB

variables defined by reifying inequalities on these expres-
sions to represent the condition that X is greater than, less
than, or equal to a certain value, i.e.

x≥i ⇔ −2nxn +
∑n−1

i=0 2ixi ≥ i (3)
x=i ⇔ x≥i + x≥i+1 ≥ 2 (4)

These can be included in the initial PB encoding, or intro-
duced as extension variables in the proof, as required. Since
>,<, and ≤ can all be expressed in terms of ≥ by negating
and adding 1 as necessary, we will write literals such as x≤j

instead of x≥j+1 where appropriate.
It remains to define faithful PB encodings of all the CP

constraints posted to the solver in terms of these variables.
For many constraints e.g. linear inequalities this is trivial,
and for other global constraints we can select the simplest
“dumbest” known decompositions since we only care that
the translation is correct, not that the resulting PB formula
has strong propagation properties.

With the encoding in place, a backtracking solver can out-
put a proof by logging a RUP constraint that encodes the
negation of the sequence guesses made prior to each back-
track. For example, if a solver guessesd X = 1, Y = 2 and
Z = 3 and then falsified a constraint, it would output

RUP: x=1 + y=2 + z=3 ≥ 1, (5)

saying that at least one of these guesses cannot hold, and that
the verifier checks this by running unit propagation under
the assignment ρ = {x=1, y=2, z=3} on the PB encoding
and previously derived constraints. This results in the proof
log being a complete description of the solver’s search tree,
and allows an unsatisfiability or optimality conclusion to be
certified.

When a CP solver also performs constraint propagation in
addition to search, additional justification constraints may
need to be derived so that inferences known to the solver
are also available to the verifier on reverse unit propagation
of the backtrack constraint. These resemble the explaining
clauses generated by lazy explanation-based hybrid CP-SAT
solvers, except they must be formally derived in the proof
system rather than simply asserted. For example if a solver
makes guesses as above and then infers that due to X = 1,
an additional variable W must be greater than or equal to 2
(e.g. from a propagator for a constraint W > X) the solver



should somehow derive x=1 ⇒ w≥2 ≥ 1. The presence of
this constraint ensures that the PB encoding of W ≥ 2 is
active in the verifier’s constraint database after propagation
of ρ = {x=1}, and we call x=1 the reason for the inference.

An important point to note is that although the binary en-
coding is not strongly propagating for individual values, it
is at least guaranteed that contradictory bounds on the same
variable, e.g. x≥l and x<u for u ≥ l, always propagate to
contradiction, and we make use of this implicitly when de-
signing justification procedures.

3 Justifying Bounds-Consistent Propagation
of Multiplication Constraints

The most obvious encoding for the constraint X × Y = Z
when the CP variables X,Y, and Z are encoded with PB bit
variables x0, . . . , xn−1; y0, . . . , ym−1; z0, . . . , zk−1, would
be to define, for each i ∈ [0 . . . n− 1] and j ∈ [0 . . .m− 1]

xyij ⇔ xi + yj ≥ 2, (6)
which is syntactic sugar for

M⇒
ij := 2xyij + xi + yj ≥ 2, and (7)

M⇐
ij := xyij + xi + yj ≥ 1. (8)

These represent the bit multiplications. We can then con-
strain the bits of Z with two inequalities that enforce

k−1∑
i=0

2izi −
n−1∑
i=0

m−1∑
j=0

2i+jxyij = 0. (9)

Note that this requires 2mn+ 2 constraints.

3.1 Deriving Simple Bounds
Proposition 1. Suppose we have a PB formula containing
the encoding of a multiplication constraint X × Y = Z as
above. Then for non-negative integers l1, l2, we can derive∑k−1

i=0 2izi ≥ l1l2 from {B1, B2} where

B1 :=
∑n−1

i=0 2ixi ≥ l1, B2 :=
∑m−1

i=0 2iyi ≥ l2

using a cutting-planes derivation of length O(m · n).

Proof. For each i ∈ [0 . . . n− 1] we can derive the con-
straint Di :=

∑m−1
j=0 2jxyij + l2xi ≥ l2, by first deriving∑

j(2
j ·M⇐

ij ), then adding B2, and saturating. If any of the
coefficients of xyij were reduced by the saturation step, we
can add literal axioms to maintain the required form.

We can then derive
∑

i(2
i ·Di), yielding

n−1∑
i=0

m−1∑
j=0

2i+jxyij +

n−1∑
i=0

2il2xi ≥ (2n − 1)l2. (10)

If we add l2 ·B1 to this we are left with
n−1∑
i=0

m−1∑
j=0

2i+jxyij ≥ l1l2, (11)

which added to the first inequality in (9) establishes the re-
quired bound. Note that this required O(m · n) steps.

The above is sufficient to create a justification for a lower
bound on Z when non-negative lower bounds for X and Y
are known. We can construct similar justifications for upper
bounds, but this requires an explicit contradiction step.

Proposition 2. Under the same assumptions above,
for non-negative integers u1, u2, we can derive∑k−1

i=0 −2izi ≥ −u1u2 from {U1, U2}, where

U1 :=
∑n−1

i=0 −2ixi ≥ −u1, U2 :=
∑m−1

i=0 −2iyi ≥ −u2,

using a derivation of length O(n ·m).

Proof. By adding each of xi ≥ 0 and yj ≥ 0 to M⇒
ij and

then saturating we can derive the constraints

W y
ij := −xyij + yj ≥ 0, W x

ij := −xyij + xi ≥ 0. (12)

This allows us to derive for each i ∈ [0 . . . n− 1], the con-
straints

∑
j(2

j ·W y
ij) + U2 and

∑
j(2

j ·W x
ij), i.e.

−
∑m−1

j=0 2jxyij ≥ −u2, and (13)

−
∑m−1

j=0 2jxyij + (2m − 1)xi ≥ 0. (14)

Then from (13) and (14) we can derive

Di := −
∑m−1

j=0 2jxyij + u2xi ≥ 0 (15)

This is because the negation of (15) can be used in a short
contradiction sub-proof: we add it to each of (13) and (14),
saturate, and then add the results to obtain 0 ≥ 1. It is an
interesting open question whether an efficient pure cutting-
planes derivation exists for constraints in this form.

Regardless, we can derive n constraints {Di} in O(m)
steps, and then compute

∑
i(2

i ·Di) + u2 · U1, yielding

−
n−1∑
i=0

m−1∑
j=0

2i+jxyij ≥ −u1u2 (16)

After adding this to the second inequality in (9), we have
derived the required bound in O(m · n) steps.

3.2 Representation with Negative Values
If a CP variable X has only positive domain values then it
can be represented in PB form as a sequence of bit vari-
ables, with the value given by

∑
i 2

ixi. When variables’ do-
mains contain negative domain values, Gocht, McCreesh,
and Nordström (2022) use a two’s complement approach,
which allows compact representation and straightforward
proofs for linear constraints. For multiplication, however, we
would prefer to use a sign-bit representation, since directly
encoding multiplication of two’s complement bit strings re-
sults in a more complex expression where the relationship
between the bounds of X and Y and the bounds on Z is ob-
fuscated (Baugh and Wooley 1973). We therefore propose
defining sets of auxiliary bit variables to represent the abso-
lute values of the two’s complement strings, defining multi-
plication of the absolute value bits and sign bits separately,
and then channelling between the two representations. This
also allows us to neatly reuse our justifications from the
positive-only case as a subroutine in the general case.



Concretely, suppose a CP variable X is encoded with a
sequences of PB bit variables x0, . . . , xn−1 along with an
additional two’s complement bit xn. To define a multipli-
cation constraint in our PB model, we would introduce an
additional set of n + 1 bit variables |x|0, . . . , |x|n to repre-
sent the absolute value of X and then define the channelling
constraints

xn ⇒
∑n−1

i=0 2ixi −
∑n

i=0 2i|x|i = 0, (17)

xn ⇒
∑n−1

i=0 2ixi +
∑n

i=0 2
i|x|i = 2n. (18)

Each equality here is represented as two inequalities with
opposite signs γ ∈ {1,−1}. Recalling for any PB literal w
the notation wσ , σ ∈ {1,−1}, where w1 = w and w−1 =
w , we can then refer to any one of these four constraints
using Cx(σ, γ), where σ specifies the sign of the reifying
term and γ the direction of the inequality, i.e. Cx(σ, γ) :=

xσ
n ⇒ γ

n−1∑
i=0

2ixi + σγ

n∑
i=0

2i|x|i ≥ 2n · (γσ+γ)/2. (19)

If we define similar channelling constraints Cy(σ, γ) and
Cz(σ, γ) for Y and Z, we can encode the multiplication of
the magnitudes as in Section 3.1:

k−1∑
i=0

2i|z|i −
n−1∑
i=0

m−1∑
j=0

2i+j |xy|ij = 0. (20)

We can then deal with the two’s complement bits separately,
by first defining an auxiliary variable s = xn ⊕ ym, i.e.

xn ∧ ym ⇒ s; xn ∧ ym ⇒ s; (21)
xn ∧ ym ⇒ s; xn ∧ ym ⇒ s; (22)

and then defining

zk ⇔ s + x=0 + y=0 ≥ 3. (23)

Note that we cannot define zk = xn ⊕ ym directly since a
negative value multiplied by 0 should result in zk being set
to 0 and not 1 (negative 0 cannot be represented in two’s
complement, unlike sign-bit representation).

This representation gives a faithful encoding of X ×Y =
Z, and also allows satisfies the following useful property,
allowing us to derive reified bounds on the magnitude bit
sum from any bound on the two’s complement sum.
Proposition 3. Suppose for bit variables x0, . . . , xn and
|x|0, . . . , |x|n we have a PB formula containing constraints
as defined in (17) and (18). Then for any integer b (positive
or negative), and γ ∈ {1,−1} we can derive

xn ∧ x=0 ⇒ γ ·
∑n

i=0 2
i|x|i ≥ γ ·max(γb, 1) (24)

xn ∧ x=0 ⇒−γ ·
∑n

i=0 2
i|x|i ≥ γ ·min(γb,−1) (25)

from
−γ · 2nxn + γ ·

∑n−1
i=0 2ixi ≥ b (26)

using O(1) RUP and cutting planes steps.

Proof. There are only two possibilities for the left-hand
sides of (24) and (25).

First if γ ·max(γb, 1) = b, then γ ·min(γb,−1) = −γ.
So we can add (26) to Cx(−1,−γ) and then add sufficient
literal axioms xn, x=0 to obtain (24); and introduce (25) by
RUP (consider γ = ±1 in each case)

Otherwise, γ ·max(γb, 1) = γ, so γ ·min(γb,−1) = b,
and we can add (26) to Cx(1,−γ) and add literal axioms to
obtain (25); and introduce (24) by RUP.

Similarly, we can derive reified bounds on the original
product variable Z from reified bounds on its magnitude.
Proposition 4. Suppose we have a PB formula containing
the encoding of a multiplication constraint X × Y = Z for
two’s complement encoded variables as above.

Then for integers b; σ1, σ2, γ ∈ {1,−1}; and letting σ3 =
σ1 · σ2, ∧L = xσ1

n ∧ yσ2
m−1 ∧ x=0 ∧ y=0; we can derive

∧L ⇒ −σ3γ · 2kzk + σ3γ ·
k∑

i=0

2izi ≥ b (27)

from ∧ L ⇒ γ ·
k−1∑
i=0

2i|z|i ≥ b (28)

with O(1) RUP or cutting planes steps.

Proof. Due to the definitions (21), (22), (23) we can intro-
duce by RUP

∧L ⇒ z−σ3

k ≥ 1, i.e. ∧ L ⇒ −σ3zk ≥ (−σ3+1)/2. (29)

By multiplying (29) by an appropriate scalar and adding it
to Cz(−σ3, γσ3) we can substitute ∧L for the reifying term
of Cz(−σ3, σ3γ). We can then add (28) to this, yielding

∧L ⇒ σ3γ ·
k−1∑
i=0

2izi ≥ b− 2k · γ · (−σ3+1)/2. (30)

We can then introduce in a single step

∧L ⇒ −γσ3 · 2kzk ≥ 2k · γ · (−σ3+1)/2 (31)

since if γ = 1 this is just (29) multiplied by 2k, and if
γ = −1 it is a trivial constraint that can be built from lit-
eral axioms (consider σ3 = ±1 in each case). Adding (31)
and (30) gives (27), as required.

3.3 Deriving Bounds on the Product Variable
A CP bounds propagator for the multiplication constraint
X × Y = Z will typically apply pruning rules to each
variable in turn, narrowing the bounds on one variable
based on the bounds on the other two. We first consider
computing the bounds on Z based on the bounds of X
and Y . Suppose the current domains of X and Y are
known to be DX ⊆ [l1 . . . u1], and DY ⊆ [l2 . . . u2].
Then the solver can infer DZ ⊆ [inf E . . . supE] where
E = {l1l2, l1u2, u1l2, u1u2}, and prune any values outside
this range.

In what follows we will use the shorthands

Σx := −2nxn +
∑n−1

i=0 2ixi, Σ|x| :=
∑n

i=0 2
i|x|i, (32)

with Σy , Σ|y|, Σz , Σ|z| defined similarly. For any integer b
we will also use b+ := max(b, 1), b- := min(b,−1).



Theorem 3. From a PB encoding of X × Y = Z defined
as described in Section 3.2 and for conjunction of reason
literals

R := x≥l1 ∧ x≤u1
∧ y≥l2 ∧ y≤u2

(33)

defined as in (3) we can derive

G1 := R ⇒ Σz ≥ inf E, and (34)
G2 := R ⇒−Σz ≥ − supE (35)

in O(n ·m) proof steps.

Proof. Let F be the PB formula consisting of the encoding
of X × Y = Z and the constraints defining the reason liter-
als x≥l1 , etc. We will first construct a derivation from F↾R
to avoid reifying everything by R. So starting with F↾R,
clearly we can introduce

Σx ≥ l1;−Σx ≥ −u1; Σy ≥ l2;−Σy ≥ −u2 (36)

by RUP, due to the definitions of the literals in R. Using
Proposition 3, and letting ℓ0x = x=0, ℓ0y = y=0 (for com-
pactness), we can then derive in O(1):

xn ∧ ℓ0x ⇒Σ|x| ≥ l+1 , xn ∧ ℓ0x ⇒−Σ|x| ≥ l-1, (37)

xn ∧ ℓ0x ⇒Σ|x| ≥−u-
1, xn ∧ ℓ0x ⇒−Σ|x| ≥ −u+

1, (38)

yn ∧ ℓ0y ⇒Σ|y| ≥ l+2 , yn ∧ ℓ0y ⇒−Σ|y| ≥ l-2, (39)

yn ∧ ℓ0y ⇒Σ|y| ≥−u-
2, yn ∧ ℓ0y ⇒−Σ|y| ≥ −u+

2. (40)

Since the constraints in the first column are (reified) pos-
itive lower bounds, and those in the second are reified
positive upper bounds, we can use Corollary 1, Proposi-
tion 1 and Proposition 2 to derive reified upper and lower
bounds on the product magnitude in O(n · m). If we
write σ1∧σ2 := x−σ1

n ∧ y−σ2
n ∧ x=0 ∧ y=0 where σ1, σ2 ∈

{+,−} (meaning ±1), the resulting eight constraints are
+∧+ ⇒Σ|z| ≥ l+1 l

+
2 ,

+∧− ⇒−Σ|z| ≥ u+
1l

-
2, (41)

−∧− ⇒Σ|z| ≥ u-
1u

-
2,

−∧+ ⇒−Σ|z| ≥ l-1u
+
2, (42)

−∧+ ⇒Σ|z| ≥−u-
1l

+
2 ,

+∧+ ⇒−Σ|z| ≥−u+
1u

+
2, (43)

+∧− ⇒Σ|z| ≥−l+1u
-
2,

−∧− ⇒−Σ|z| ≥ −l-1l
-
2. (44)

We can then apply Proposition 4 to transform these into con-
ditional bounds on the original bit variables for Z, noting
that the product σ1, σ2 of the signs in the condition σ1∧σ2

determines whether the inequality should be flipped.
+∧+ ⇒ Σz ≥ l+1 l

+
2 ,

+∧− ⇒ Σz ≥ u+
1l

-
2, (45)

−∧− ⇒ Σz ≥ u-
1u

-
2,

−∧+ ⇒ Σz ≥ l-1u
+
2, (46)

−∧+ ⇒−Σz ≥−u-
1l

+
2 ,

+∧+ ⇒−Σz ≥−u+
1u

+
2, (47)

+∧− ⇒−Σz ≥−l+1u
-
2,

−∧− ⇒−Σz ≥ −l-1l
-
2. (48)

Separately, we can deal with the cases where X and Y are
0, introducing by RUP
x=0 ⇒ Σz ≥ 0, y=0 ⇒ Σz ≥ 0, (49)
x=0 ⇒−Σz ≥ 0, y=0 ⇒−Σz ≥ 0. (50)

Since we have shown we can derive these twelve con-
straints from F↾R in O(n ·m) steps, Theorem 2 says we can

derive versions of them additionally reified by R in O(n·m)
from F .

Suppose now that we have the negation of G1↾R, i.e.
−Σz ≥ − inf E + 1, and let Hl be the set of lower bound
constraints on Σz: (45), (46), and (49). For each constraint
in C ∈ Hl, an exhaustive case analysis on the possible signs
for l1, l2, u1, u2 (nine cases) tells us that either (inf E−1) is
strictly less than the right-hand side of C, or one of the reify-
ing conditions on the left-hand side of C must be violated.
This means we can derive by RUP the six constraints

xn ∧ yn ∧ x=0 ∧ y=0 ⇒ 0 ≥ 1, (51)
xn ∧ yn ∧ x=0 ∧ y=0 ⇒ 0 ≥ 1, (52)
xn ∧ yn ∧ x=0 ∧ y=0 ⇒ 0 ≥ 1, (53)
xn ∧ yn ∧ x=0 ∧ y=0 ⇒ 0 ≥ 1, (54)
x=0 ⇒ 0 ≥ 1, y=0 ⇒ 0 ≥ 1, (55)

which immediately allow us to derive contradiction (0 ≥ 1)
in O(1) resolution steps (Theorem 1).

Then by Theorem 2 this means we can derive R ⇒ 0 ≥ 1
from R ⇒ Hl and ¬G1 in O(1). Hence we can complete our
derivation of G1 from F by following the above procedure
to first derive R ⇒ Hl in O(m ·n) and then introducing G1

using an explicit contradiction sub-proof that derives from
R ⇒ 0 ≥ 1 as above in O(1) and then introduces 0 ≥ 1
by RUP (the negation of G1 propagates all the literals in R
leading to contradiction).

An analogous derivation allows us to derive G2 by redun-
dance from reified versions of the upper bounds: (47), (48),
and (50).

3.4 Deriving Bounds on the Multiplicands
The bounds propagator for X × Y = Z will also compute
bounds on X based on bounds of Y and Z. If we show how
to justify this, we have likewise shown by symmetry how to
justify bounds on Y based on X and Z, and thus completed
the description of our method for adding proof logging to a
bounds-consistent multiplication propagator. Unlike bounds
on the product variable, these inferences cannot be com-
pactly expressed as a simple min/max operation, since the
solver must deal with different cases depending on whether
0 is within the bounds of Z.

Suppose that the current domains of Y and Z are known
to be DY ⊆ [l2 . . . u2], and Dz ⊆ [l3 . . . u3]. First if
l2 ≤ 0 ≤ u2 and l3 ≤ 0 ≤ u3 then we cannot infer anything
about the bounds on X , since any value is possible. Next,
if l2 = u2 = 0 and 0 /∈ [l3 . . . u3] then we can immediately
infer contradiction, and the justification follows by RUP. In
any other case, we can compute bounds on X which may re-
duce the domain, and a complete set of cases for this is given
by Schulte and Stuckey (2001) and also Apt and Zoeteweij
(2004).

Fortunately, we do not need to take each case in turn for
constructing justifications, instead we can rely solely on the
fact the propagator maintains bounds consistency.

Theorem 4. Suppose for a multiplication constraint
X × Y = Z a bounds-consistent propagator can infer
bounds l ≤ X ≤ u based on l2 ≤ Y ≤ u2 and l3 ≤ Z ≤ u3.



Then for a PB encoding of X × Y = Z defined as de-
scribed in Section 3.2 and for a conjunction of reason literals

R := y≥l2 ∧ y≤u2
∧ z≥l3 ∧ z≤u3

(56)

defined as in (3), we can derive

R ⇒ Σx ≥ l, and R ⇒ −Σx ≥ −u (57)

in O(n ·m) proof steps.

Proof. Let F be the PB formula containing the encoding
of X × Y = Z and definitions of the reason literals. We
can introduce x>u, x<l as extension variables in the proof
if necessary, so assume F contains the constraints defining
these too. Now let R1 = R∪ {x>u}, R2 = R∪ {x<l}.

From F↾R1
and letting l1 = u+ 1 we can derive

+∧+ ⇒ Σz ≥ l+1 l
+
2 ,

−∧+ ⇒ Σz ≥ l-1u
+
2, (58)

+∧− ⇒−Σz ≥−l+1u
-
2,

−∧− ⇒−Σz ≥−l-1l
-
2. (59)

x=0 ⇒ Σz ≥ 0, x=0 ⇒−Σz ≥ 0, (60)
y=0 ⇒ Σz ≥0, y=0 ⇒−Σz ≥0. (61)

in exactly the same O(n ·m) steps as in the proof of Theo-
rem 3. But from F↾R1 we can also introduce by RUP

Σz ≥ l3 and − Σz ≥ −u3. (62)

We also know that due to bounds consistency, there cannot
be any real numbers a ∈ [l2 . . . u2], b ∈ [l3 . . . u3] such
that (u + 1) × a = b. We can use this to ascertain by case
analysis on the possible signs for (u + 1), l2 and u2, (six
cases) that for all the constraints in (58) and (59); and at
least one of the constraints in each of (60) and (61); either
the bound on Σz contradicts one of the bounds in (62), or
else one of the reifying conditions is violated. Hence we can
introduce again the same clauses (51) to (55) and so derive
contradiction from F↾R1

.
An analogous argument will show that we can derive con-

tradiction from F↾R2
in O(n ·m) steps. Thus by Theorem 2

we can derive ∧R1 ⇒ 0 ≥ 1 and ∧R2 ⇒ 0 ≥ 1 from F
in O(n ·m) steps. Recalling the definitions of R1, R2, and
reified PB constraints, these are the same as

R ⇒ x>u ≥ 1 and R ⇒ x<l ≥ 1, (63)

and then our desired constraints (57) follow by RUP.

4 Implementation and Experiments
The constructive proofs of Theorem 3 and Theorem 4 to-
gether define a procedure for constructing justifications that
can be implemented in a proof logging CP solver. We omit
implementation details, noting that all that is strictly re-
quired is to have the solver write out each rule application
we have outlined at the point of bounds propagation using
little more than template-based print statements. To illus-
trate this, we have extended the Glasgow Constraint Solver
(GCS) project of Gocht, McCreesh, and Nordström (2022)
with a bounds consistent multiplication propagator1. Since
GCS already has support for auto-tabulation with proof log-
ging, we also created an alternative implementation that uses

1https://doi.org/10.5281/zenodo.14500848

(a) Solve time (log scale) with proof logging vs. solve time without
proof logging for both approaches.

(b) VeriPB verification time (log scale) vs. solve time without proof
logging for both approaches.

Figure 1: Comparing our approach using bounds-consistent
justifications to auto-tabulation proofs.

generated tables for justifications. This involves precomput-
ing all possible solutions to a constraint, and then defining a
new constraint that says at least one of these solutions must
hold. Once these reified solutions are logged in the proof,
any bounds-consistent propagation justification follows by
RUP. For our justification procedures to be worthwhile, they
need to be at least better (faster to produce and verify) than
this brute force method.

To test this empirically, we ran the solver on some min-
imal CSP instances, with and without both kinds of proof
logging and verified the produced proof files with the VeriPB
tool. For further validation, we tested the solver on one thou-
sand synthetic instances, each consisting of a single ternary
multiplication constraint with domains that are randomly
chosen (increasingly large) sub-intervals of [−200 . . . 200].
We used hardware with dual AMD EPYC 7643 CPUs,
2TBytes RAM, running Ubuntu 22.04. The results of this
are shown in Figure 1. Clearly BC proof logging is much
faster than the auto-tabulation baseline here. Then for an
additional example, we modelled the “n-fractions” problem



from CSPLib2 for n = 2, which uses several multiplication
constraints with domains of up to size 10, 000. Using GCS
augmented with our multiplication constraint, we were able
to generate a 428MB proof of the uniqueness of the solution
(up to symmetry) in 8.8s, and verified this using VeriPB in
4864.5s. We stopped running the same problem using tabu-
lation proofs when the proof file size exceeded 2TB.

We leave a more comprehensive analysis of the behaviour
of a proof logging solver on more diverse benchmarks to fu-
ture work. Precise overheads can be highly implementation-
dependent as the solver continuously writes to disk. But our
indicative results demonstrate that our approach is practical,
and far better than any known alternative.

5 Conclusion
While many constraint propagators are almost trivial to add
pseudo-Boolean proof logging, bounds-consistent multipli-
cation justifications do require some more intricate construc-
tion. Nevertheless, we have shown that there is a clear return
on investing this effort, and that once again VeriPB proofs
are surprisingly amenable to certifying reasoning in con-
straint programming.

Additionally, this work is an exemplification of how PB
proofs under restrictions and proofs by contradiction can be
employed when designing a justification procedure, and we
expect these will be useful when implementing proofs for
further constraints, particularly those that behave differently
when negative integer values are involved.
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