Proof Logging for the Circuit Constraint

Matthew J. Mcllree![0009-0005=5042—0876] ' Cjarapn
McCreesh![0000-0002-6106-4871] 41 Jakob Nordstrom?2[0000—0002—2700—4285]

L University of Glasgow, Scotland
2 University of Copenhagen, Denmark and Lund University, Sweden

Abstract. Proof logging in constraint programming is an approach to
certifying a conclusion reached by a solver. To allow for this, different
propagators must be augmented to produce justifications for any infer-
ences they make, so that an independent proof checker can certify cor-
rectness. The Circuit constraint is used to enforce a Hamiltonian cycle on
a set of vertices, e.g. for vehicle routing. Maintaining consistency for the
Circuit constraint is hard, so various ad-hoc propagation techniques have
been devised and implemented in solvers. We show that standard Circuit
constraint inference rules can be efficiently justified within a pseudo-
Boolean proof system, either by using a simple sequence of cutting planes
steps or through a conditional counting argument.

Keywords: Proof logging - Circuit - Constraint propagation.

1 Introduction

A constraint programming (CP) solver that implements proof logging is able to
provide a strong correctness guarantee for every result it produces. Alongside any
answer, it outputs a formal proof that rigorously demonstrates that the answer
is correct. This is already standard practice in the field of Boolean satisfiability
(SAT) solving [8132], and will, we believe, be crucial for the acceptance of CP in
safety-critical applications. Proof logging is achieved by having a solver output
justifications for all its reasoning steps in the language of a sound and complete
proof system. Previous work [10}/16,/25] has shown that it is possible to do this
efficiently for many important constraint propagation algorithms, by using a
pseudo-Boolean (PB) proof system that is based on cutting planes [3,[7] along
with further strengthening rules. These proofs are written in a machine-readable
format that can be independently verified using the VeriPB proof checker [2].
A common feature of all propagation algorithms that have been considered
before is that they enforce a strong level of local consistency among the vari-
ables in scope. For example, AllDifferent [10], SmartTable and Regular [25] enforce
domain consistency (DC), while LinearEquality [16] enforces bounds consistency
(BC). To show a proof logging procedure for these constraints is comprehensive,
it is sufficient to establish that any DC or BC inference can be justified, since this
demonstrates that certification is possible regardless of how that inference is ac-
tually computed. The same approach is no longer viable when dealing with more

2 M. J. Mcllree et al.
0 ?

%o
; ;g O § Z@‘g

SN~
3
(a) Valid assignment. (b) Invalid assignment. (c) Partial assignment.

Figure 1: Interpretation of assignments for six variables constrained by Circuit.

complex propagators that have less clearly defined notions of consistency, as it
is harder to capture clearly in advance what propagations are to be expected. If
pseudo-Boolean proof logging is to be applicable to CP in general, it is impor-
tant to show that these types of propagators do not present any fundamental
barriers to its adoption.

In this paper we present proof logging for propagation of the (Hamiltonian)
Circuit constraint. Enforcing domain consistency for Circuit is known to be NP-
hard [19] and so it is generally propagated via ad-hoc propagation rules [4,12/30].
We therefore work from the simplest checking and basic lookahead inferences, up
to more advanced propagation techniques based on depth-first search and iden-
tification of strongly connected components. In each case we briefly outline the
situation in which the inference applies, and find that it can be justified either
by a simple sequence of cutting planes steps, or through a conditional counting
argument. The latter consists of identifying a vertex which cannot reach every
other vertex under some conditions, and deriving PB constraints over auxiliary
variables that establish the set of reachable vertices is too small. We have im-
plemented and tested these techniques, building a complete certifying Circuit
propagator comparable in propagation strength to well known open-source CP
solver implementations [6l{1421], and have been able to produce and verify proofs
using this for a variety of instance sizes.

2 Preliminaries

The Circuit constraint uses a successor representation to treat a set of variables
Xo ... X1, each with domain {0, ...,n —1} as the vertices of a directed graph.
At any stage in the solving process, an edge (i,) is viewed as being present in
the graph if and only if j is still in the domain of the variable X;. Circuit requires
that any assignment represents a Hamiltonian cycle, with the value of X; repre-
senting the successor of 7 in a tour that visits all vertices; see Figure |1l This is
useful for modelling problems such as vehicle routing [22}23|, activity schedul-
ing 9] and other graph problems [4}/13]. In CP solvers, propagation for a global
Circuit constraint is generally achieved by first at least partially propagating
an AllDifferent and then attempting further propagation based on the fact that
there can be no sub-cycles. At a minimum the algorithm should check whether
any sub-cycles are encoded by the current partial assignment and backtrack if
so [4], but further lookahead and ad-hoc propagation rules are possible [12,/30].

Proof Logging for the Circuit Constraint 3

2.1 Requirements for Proof Logging

To follow the CP proof logging methodology of previous work [16], we are re-
quired to compile any CP problem to a pseudo-Boolean (PB) format. This is
a separate model of the problem that is only used for certification and should
be kept independent of the solving process. In a PB model we are only al-
lowed 0-1 variables (PB variables), and all constraints must be integer linear
inequalities (PB constraints) over literals, where a literal ¢ is a PB variable
or its negation T = 1 — z. We also allow reified PB constraints of the form
ANr = Zle ail; > A, where A\ r is a conjunction of literals: these are syntac-

tic sugar for > Kr-+ Zle al; > A for K chosen to be sufficiently large. We can
also reify the negation of a PB constraint on the negation of each of the literals
in r, which allows us to define A r <~ Zle ail; > A.

We can create a PB model from a CP problem by associating each integer
variable X with a set of bit variables {p0, 1, Zp2, ... } sufficient to represent
every value in the variable’s domain using a two’s complement representation.
We then encode restrictions on X imposed by CP constraints by adding pseudo-
Boolean constraints over these bit variables. Since this process is not verified in
itself, we should choose simple encodings that establish a clear correspondence
between satisfying assignments of the CP and PB models. To aid this, we can
employ auxiliary PB variables z[i]—; which are defined through reification to
be true precisely when the bit representation of the variable X; evaluates to the
value j. For example if we have k bits and want to define z[4]—4 we would have PB
constraints equivalent to z[4]_3 <= Ei:ol 2iz[4]p; = 3. This gives us flexibility
for PB encodings since we can make use of either bitwise or direct representations
for variables depending on what gives us the most straightforward encoding of
each CP constraint. We might also define other auxiliary variables that are not
directly tied to the values of CP variables for use as flags, selectors, or counters.

For a Circuit constraint on n variables Xy, ..., X,,_1, we already know how to
achieve proof-logging for the AllDifferent component [10]. A simple PB encoding
of AllDifferent consists of constraints on each distinct pair of variables (X;, X,.)
that enforce either X; < X, or X, < X; depending on a selector bit fj,.

We are then left with the task of defining PB constraints that encode the
elimination of subcycles. For this we can take inspiration from known SAT en-
codings, since a logical clause such as x V § V Z is always equivalent to a PB
constraint (z +y + z > 1), and so PB formulas can be viewed as a superset
of conjunctive normal form. There are many possible options for such encod-
ings [17], with different trade-offs, but since our chosen encoding will only be
used for certification and not solving, compactness and obvious correctness is
much more important than strong propagation properties. We make use of a PB
encoding that is a simplified version of the SAT encoding given by Zhou |33} Sec.
4.2], and first define an additional set of auxiliary bit variables {p[i]so, p[i]p1,- - - }
for each variable X, sufficient to represent the range of integers 0...n — 1. We
will use P; as a shorthand for the sum 3_, 29plily;, and conceptually treat P;
as a variable in itself, encoded with a sequence of PB bit variables. These bits
are then constrained to represent the “position” of X; in the circuit relative to

4 M. J. Mcllree et al.

Algorithm 1 Procedure for constructing a PB encoding of a subcycle elimina-
tion constraint on variable Xg,..., X,_1

1: define P, = 0;

2: for alli € {0,...,n— 1} and j € {1,...,n— 1}
3: define I[i]:j — Pj — PZ‘ 2 1

4: L define x[i]:]- - —P]' + P> -1

5: for alli e {1,...,n—1}

6: L define zfi]l-o = P >n-—-1

7 define z[i]l-o = —-P; > -n+1

X, which is arbitrarily designated as the start vertex. We do this as shown in
Algorithm (1} define Py = 0, and then require P; = P; + 1 whenever z[i]—; is
true, unless j = 0, in which case require P; = n — 1. A satisfying assignment to
these PB constraints is only possible when the cycle obtained by following the
successors starting from X, visits every vertex. The condition P; = j can then
be interpreted as encoding the fact that “the vertex represented by X; is the j;p
vertex visited after vertex 0 in the Hamiltonian cycle”.

Once a valid encoding has been produced, a proof logging CP solver can
justify its reasoning steps by deriving further PB constraints, and recording
them in a proof log file that can eventually be used certify whatever result it
arrives at. Further explanation of how this can be achieved in general for a
backtracking-based CP solver is given by Gocht et al. [16], but for our purposes
the key idea is that whenever the solver backtracks it should be possible to derive
a PB constraint that encodes the negated conjunction of the currently guessed
assignments. For example, if the solver guesses (Xo = 2,X; = 3, X2 = 1) and
then discovers a contradiction before assigning the remaining variables it should
derive the PB constraint

20y +2[l]_y +2[2]_3 > 1. (1)

As a shorthand we will sometimes denote the solver’s guessed assignments by
G, and use A G to denote the conjunction of pseudo-Boolean literals encoding
them. So in general a backtracking justification is of the form AG = 0> 1.
This is somewhat similar to the way lazy clause generation solvers work [27],
except the “explaining” constraints do not inform the solving process, and they
have to be formally derived from the model and previously derived constraints
via VeriPB’s sound and complete proof rules, rather than simply asserted. As
mentioned, these rules are based on the cutting planes proof system: so we can
derive linear combinations of PB constraints, divide with rounding, saturate con-
straints to minimise coeflicients, and also use the axiom that any single literal is
at least 0; see Buss and Nordstrom [3| for more details. Additionally, if any aux-
iliary PB variables required are not already defined in the original PB formula,
VeriPB allows them to be introduced dynamically whenever needed as extension
variables during the proof. This is an application of the VeriPB’s redundance-
based strengthening rule, and for our purposes is only needed to introduce fresh

Proof Logging for the Circuit Constraint 5

variables reified on arbitrary constraints [2]. The backtracking justification
itself should be derived via a further rule: the reverse unit propagation (RUP)
rule. This allows derivation of a PB constraint D if the verifier can obtain a con-
tradiction by iteratively enforcing bounds consistency on the negation of D along
with constraints in the original formula and any previously derived constraints.
The iterative consistency process is the pseudo-Boolean generalisation of unit
propagation from SAT, and can be performed efficiently by the verifier [15], al-
lowing “obvious” facts to be made available when checking RUP derivations. In
the example above, sin is a clause, the negation asserts that all the literals
are false, i.e. 2[0]_, = 2[1]_; = x[2]_5 = 0, and so for the RUP check to succeed
we would need these assignments to trigger propagations that eventually lead
the verifier to a contradiction when propagating over the constraints in the PB
model along with those already derived in the proof log.

When the solver performs sophisticated reasoning via bespoke propagation
algorithms, we are able to guarantee that deriving the backtracking clause in this
way will be possible providing any inferences made by a CP propagator at the
given level of search are also be available to the verifier via unit propagation when
performing the RUP check. We can do this by ensuring that AG = y > 1is
in the proof log, where y is a PB literal that encodes the propagator’s inference.
So if, under the sequence of guesses used in and prior to backtracking, a
Circuit propagator is able to infer say, X3 = 0, we should somehow derive

1; (2)
1. (3)

These justifications are then interleaved with the backtracking clauses, resulting
in the complete proof being essentially a description of the solver’s backtracking
search tree, expressed using RUP steps. What we show in this paper is that a
range of standard Circuit propagation inferences can indeed be efficiently justified
by deriving these intermediate pseudo-Boolean constraints.

33[0]:2 /\.’L‘[l]:g /\I[Q]:g — .%‘[3}:0
Le. mzz +m 3+m 31[3]=0

AV

3 Proof Logging for Simple Circuit Propagators

The minimum requirement for a Circuit sub-cycle elimination algorithm is that
it is checking: it should return contradiction if a total assignment of the CP
variables contains a small cycle. This requires no justification under our PB
formula (as produced by Algorithm , since repeated bounds consistency (unit
propagation) will immediately establish a contradiction. In particular, Py = 0
together with Xy = vy will fix P,, = 1, and then this together with X,,, = v
will fix P,, = 2, and so on. Since there must be a small cycle, say of length
m < n, passing through X, (as we are assuming AlIDifferent has been correctly
enforced), at some point unit propagation will attempt to fix the value of P,
when it has already been fixed to a smaller value, arriving at a contradiction.
A better checking propagator can also return contradiction on partial assign-
ments, when they encode a small cycle. This is what Francis and Stuckey [12]

6 M. J. Mcllree et al.

call check, and is a key component of the NoSubtour propagator of Pesant et
al. |29] and the similar NoCycle propagator of Caseau and Laburthe [|4]. Such
solver reasoning does require some justification in the proof, since a small cycle
encoded by the partial assignment might not set Xy, and the corresponding PB
variables for this are required to set off the chain reaction of unit propagation
and achieve the inconsistent setting of p variables. To create such a justification
we can use the cutting planes addition rule to add together all the corresponding
constraints for the position variables in the cycle, allowing us to unit propagate
a contradiction under the solver’s guesses.

In particular, if a sequence of guesses G includes a small cycle of length
m < n not passing through 0 and consisting of vertices (vy,...,vy), we would
add together each of the constraints of the form
= P,

Vit1 PU'i >1 (4)
(from line 3 in Algorithm [If) for each guessed assignment (X,, = v;11) € G
identified by the propagator as being part of the cycle. Recall from Section [2.1

that these reified PB constraints are actually represented as

K-xfv]_,, +Poyy — Py 21 (5)

for some sufficiently large K, and hence each successive addition cancels the
previous P,, value. This results in the constraint

m[vi]:U'HJ

K-x[v1]:v2—i—---—l—K-x[vm]:vl — P, +P,—...
_Pvm,1+Pvm_Pvm+Pv12m7 (6>

which telescopes to

K -zlv)_,, + -+ K- zfon]_, >m. (7)

=vg =v1

With this constraint present in the proof log, unit propagation of the small
cycle in G will obviously lead to 0 > m, a contradiction, and henceis adequate
to allow justification within the proof framework for the solver backtracking.

The above idea can be easily be extended to produce justifications for a
basic lookahead version of the check propagator, called prevent by Francis and
Stuckey |12], which is described in the literature [4,29,/30]. This filters domains
by disallowing any further assignments that would immediately complete a sub-
cycle. So if a sequence of guesses G includes the encoding of a chain of vertices
(V1,...,Vpm), prevent would remove v from the domain of X,, , and this can be
justified by first deriving exactly as above, which then allows us to derive
NG = z[vm]_,, by RUP, as required.

4 Proof Logging for Stronger Propagation

There are several possibilities for stronger propagation for the Circuit constraint,
although there is no general consensus between solvers on which forms are worth-
while in practice. This paper does not argue for one propagation strategy over
any other; rather, our focus is to show that whatever propagator is chosen, it

Proof Logging for the Circuit Constraint 7

should be feasible to implement a proof logging version of it. We will demon-
strate that it is possible to provide pseudo-Boolean proof logging for Circuit
propagators that make use of more complex reasoning by considering a further
propagator and set of associated possible inferences. This algorithm is based on
analysis of the depth-first spanning tree obtained during a search of the domain
graph for strongly connected components (SCCs). Stuckey and Francis call it the
SCC algorithm [12] and versions of it are implemented in the solvers Gecode [14],
Chuffed 6], JaCoP |21], and CP-SAT |28| among others.

Let G = (V, E) be a graph, and let R be the (directed) reachability relation
on G —forv,w € V, (v,w) € R if and only if there exists a path from v to w. We
will denote by REACH(v) the set {w : (v,w) € R}, i.e. the set of all vertices in
G reachable from v. The core observation used by the SCC algorithm for Circuit
propagation is that if the graph contains a Hamiltonian circuit, then it can only
have a single strongly connected component, which means every vertex must be
reachable from every other vertex. Thus, if we identify more than one strongly
connected component in the graph induced by the current domains of variables
in scope we can backtrack early, as no satisfying Circuit assignment is possible.

At any given point in the process of solving a constraint satisfaction problem
involving a Circuit constraint on variables Xo, ..., X,,_1, let G be the graph that
has a directed edge (v, w) whenever w is still in the domain of X,. To simplify the
discussion of proof logging for the SCC algorithm, we will assume in what follows
that if we can identify a vertex v in this graph such that |REACH(v)| < |G| then
we can run a proving procedure ReachTooSmall(v) that derives in the proof log
a contradiction subject to the current sequence of guesses ie. AG = 0 > 1.
Furthermore, we will assume that if we have an additional “assumption” PB
literal £ that encodes a further restriction on the graph so that |[REACH(v)| < |G|
we can similarly run ReachTooSmall(v) and derive AG A ¢ = 0 > 1. We will
later outline in Section and Section how ReachTooSmall can construct
this argument using proof steps recognised by VeriPB.

The SCC propagator is based on Tarjan’s algorithm |31], which uses the fact
that strongly connected components always form subtrees of a depth-first span-
ning forest of the graph. It initiates a depth-first search (DFS) from a chosen
arbitrary vertex vy, and immediately returns contradiction if any of its descen-
dants are identified as the root of an SCC. To justify backtrack in this case we
can run ReachTooSmall(w), where w is the root of the identified SCC. This will
always prove contradiction as vy cannot possibly be reachable from w, otherwise
vg would also be part of the SCC and hence w would not be the SCC root.

A vertex can only be identified as the root of an SCC once all of its de-
scendants have been visited during the DFS. So if none of vy’s descendants are
identified as SCC roots, it must be that all the vertices reachable from vy com-
prise a single SCC. In this case, either DFS has visited every vertex, in which
case there is no contradiction for Circuit, or else there is some vertex not reach-
able from vy and the propagator returns a contradiction. The latter can clearly
be justified by ReachTooSmall(vp).

8 M. J. Mcllree et al.

Backtracking when the domain graph is disconnected or contains more than
one SCC seems to be the most commonly implemented technique for SCC prop-
agation, based on our examination of source code for open source solvers. Several
solvers such as Gecode and Chuffed also implement further ad-hoc propagation
opportunities when multiple distinct subtrees are explored below vg. In each of
the following cases we state a propagation rule applicable as part of the SCC
algorithm and briefly indicate how ReachTooSmall can be used to justify these
too. Figure [2] gives an illustration for each.

1. Prune any edge (w,vg) where vy is the starting vertex and w is not in the
earliest visited subtree [12|. To justify this we use x[w]—,, as an assumption
literal and run ReachTooSmall(r), where r is the root of a subtree visited
earlier than the one containing w. Unit propagation of z[w]—,, will force
z[w']=y, = 0 for all w’ # w due to the encoding of AllDifferent, so the
assumption excludes any edges from descendants of r leading to vy. Since
vertices in this earlier subtree cannot have any edges leading to vertices in w’s
subtree or later, otherwise they would have been traversed as part of the same
subtree by DFS, it follows that r cannot reach w. Hence, ReachTooSmall(r)
can be used to establish A G A z[w]—,, = 0 > 1. See Figure

2. Prune any edge (vp, w) where vg is the starting vertex and w is not in the
latest visited subtree |30|. Similarly, we use z[vg]=, as an assumption, and
this time run ReachTooSmall(w) to obtain a contradiction under the as-
sumption. Since w can only reach vertices in its own subtree or earlier, and
vg no longer has edges to the later subtrees, it is clear than not everything
can be reached from w. See Figure [2b]

3. Prune any edge (v, w), where w is v’s first child, and no edges from vertices
in the subtree rooted at w lead to vertices visited earlier in the DFS than
v [12]. Here we can run ReachTooSmall(w) under the assumption x[v]—,,,
since fixing the successor of v to be w eliminates any possibility of reaching
any nodes visited earlier than v from w. See Figure

4. Prune any edge (v,w) that skips a subtree, that is, where v is in the iy,
visited subtree and w visited earlier than the root of the (i —1)th subtree |30].
Intuitively this rule is sound because if the edge (v, w) were used in the circuit
we would have to visit the initial node vy between visiting w and visiting the
root 7 of the (i—1)th subtree, but also visit vy between visiting r and visiting
v, and both of these cannot be simultaneously true. A single assumption and
ReachTooSmall argument is not always sufficient to justify this pruning, but
our intuition can be encoded using two ReachTooSmall arguments and more
complex assumptions. If 7 is the root of the (i —1)th subtree, we assume first
that r must be seen at some point between w and vy (denoted as w < r < vg)
and then run ReachTooSmall(v). This will derive a contradiction as every
path from the subtree containing w to the subtree rooted at r must pass
through vy and so there will be no way to reach vy without violating the
assumption. We can similarly assume that v must be seen between r and vy
(r < v < v) and establish a contradiction using ReachTooSmall(v). Note
that this establishes the negation of our two assumptions, namely that vg

Proof Logging for the Circuit Constraint 9

(a) Justifying the “prune skip to root” in-
ference. If the dotted edge (w, vo) is used,
(r1,v0) is eliminated and so there is no
way to reach vg from rs.

(c¢) Justifying the “prune within” infer-
ence. If the dotted edge (v,w) is used,
(v,71) is eliminated and so there is no way
to reach e.g. vy from w.

(b) Justifying the “prune root” inference.
If the dotted edge (vo, 1) is used, (vo, 72)
and (vo,r3) are eliminated and so there
is no way to reach e.g. ro from ry.

(d) Justifying the “prune skip” inference.
We can disprove the ordering assumption
w < 12 < Vo with ReachTooSmall(w) and
disprove the ordering assumption 72 <
v < vo with ReachTooSmall(r;). These to-
gether imply that (v, w) cannot be used.

(e) Justifying “no backedges” contradic-
tion. There are no backedges from the
subtree rooted at r2, and since “prune
skip” inferences have already been made,
there is then no way to reach any nodes
earlier than r2 from rs.

Figure 2: Illustrations of how each SCC inference can be justified. Three distinct
subtrees explored by a DFS of the domain graph starting at vy are indicated
with triangles. The dashed edge is the one assumed to be used as part of the
circuit (via the corresponding variable assignment), and the double ringed node
is the one passed to the ReachTooSmall procedure.

10 M. J. Mcllree et al.

must be seen both between w and r (v < vg < r) and between r and v
(r < vp < w) which is impossible if w is the immediate successor of v. So
altogether, if we can encode these ordering assumptions in pseudo-Boolean
form, and run ReachTooSmall subject to them, we should also be able to
justify this pruning inference. See Figure

5. Return a contradiction if there are no backedges identified after exploring any
subtree later than the first [30]. Backedges are edges from a node in the iy,
subtree to a node in the (i — 1)4,. To justify contradiction in a case where a
subtree rooted at w has no backedges we can run ReachTooSmall(w). Since
any edges that skip subtrees have been removed at this point, by rule 3.,
and the only edges left leading to the initial node vy come from the earliest
subtree, by rule 1., the only way to escape the subtree rooted at w would be
through a backedge, and so ReachTooSmall(w) will establish a contradiction.
Similarly, if there is only a single backedge (v,w) we can justify the fixing
of X, = w, by first assuming that it is not taken, i.e. z[v]
ReachTooSmall(v). See Figure

_y» and running

These are all the inference rules we implemented in our prototype certifying
Circuit propagator, as discussed in Section [f] We observe, however, that similar
strategies may be used to introduce proof logging for other ad-hoc techniques. For
example, if the algorithm is based on identifying strong bridges |18] and requiring
them to be part of the solution, clearly a ReachTooSmall argument must be
applicable if the bridge is assumed to be excluded. Another set of inferences can
be applied if the Circuit is first relaxed to a path constraint [11], and the structural
filtering of the reduced graph used here is essentially a generalisation of rule []
(“prune skip”) and so should be amenable to justification using ReachTooSmall
and ordering assumptions.

4.1 Proving a Set Reachable from Vertex 0 is Too Small

We have shown in the previous section that all the inferences performed by a typ-
ical SCC propagator can be justified within a proof log if we are able to construct
a sequence of PB steps ReachTooSmall(v) that establishes a contradiction for
any vertex v in the graph G induced by the current domains of variables where
|[REACH(v)| < |G]. It needs to be possible to construct these steps subject to
three kinds of assumption, namely, assuming an edge is required, assuming an
edge is disallowed, and an “ordering assumption” assuming that a particular
vertex must be seen between two other vertices. We now give a sketch for how
such an argument can be constructed. First we will show, by way of example,
how to construct it when running from the 0 index vertex, ReachTooSmall(0),
without assumptions, as this is the simplest case. We later show how this can
be modified to work for an arbitrary vertex v, and then finally show how the
assumptions can be taken into account.

The idea is to collect possible position values (as defined in Algorithm [I)) in a
breadth-first search from the starting node. We create auxiliary variables p[i]—
defined through reification to be true if and only if the bit sum P; is equal to

Proof Logging for the Circuit Constraint 11

k, and we aim to derive sets of PB constraints enforcing AtlLeastl and AtMostl
requirements over all of the possible i values for each k € {0, ..., |REACH(0)|}.
As an example, suppose the domain graph under a sequence of guesses G is as
represented in Figure Clearly REacH(0) = {0,1,5}, which has fewer that
6 elements, so we should be able to run ReachTooSmall(0). In this particular
case the procedure would derive constraints to which show that for
each k € {0,1,2,3} at least one of the vertices 0, 1, 5 must have position value
k. It would then derive corresponding constraints to which express
the fact that each vertex can have at most one position value. Note that these
are all reified on the sequence of solver guesses, but the A G = is omitted for
compactness.

Atleastl constraints: AtMost1 constraints:
p[0]=o >1 (8) —pl0]=o —p[0]=2—p[0]=3 >—1 (12)
p[l=1+p[5]=1 =1 (9) —p[l]=1—p[l]=2—p[l]=3 >—1 (13)
p[0]=2+p[1]=2+p[5]—2 >1 (10) —p[5]=1—p[5]=2—p[5]=3 >—1 (14)
p0]—s+p[l]=s3+p[5]=3 >1 (11)

Using the addition rule the procedure can then derive the sum of all these
constraints, and by construction everything on the left-hand side will cancel out,
leaving G = 0 > 1, as required. This process similar to how Hall violators for
AllDifferent are derived by Elffers et al [10].

It remains to show how the AtlLeastl and AtMost1 constraints can be derived
using VeriPB proof rules. The first AtLeastl can be introduced by RUP, since
p[0]=o propagates directly from the encoding. Then, each subsequent constraint
can be derived from the previous constraint by first deriving some intermediate
reified constraints by RUP, adding them together, and applying the saturation
rule [3], which reduces any unnecessarily large coefficients. For example to derive
from @ we would use the following proof steps:

21— + z[1]=5 >1 (RUP) (15)
P[], +z[1]_y +p[0]=2 >1 (RUP) (16)
P[], +z[1]_g + p[5l_2 >1 (RUP) (17)
p[1]_, +pl0]=2 + p[5l=2 >1 ((I5)] +[(16)] + [AT7)] sat.) (18)
pBl_; + p[0]=2 + p[1]= >1 (similarly) (19)
p[0]=2 + p[1]=2 + p[2]—2 >1 [(9)] + [(A8)] + [(19)} sat.) (20)

To derive each of the AtMostl constraints, we first introduce constraints
pli]=k + pli]=; > 1 by RUP for each distinct pair of values (I, k) values possible
for P;. We then add these together but divide by j after adding the j;, constraint
to recover the required constraint.

12 M. J. Mcllree et al.

4.2 Proving a Set Reachable from an Arbitrary Vertex is Too Small

The above example establishes the general structure of the ReachTooSmall pro-
cedure: we collect AtLeastl constraints over auxiliary position variables until we
have more values than variables, and then add recovered AtMostl constraints
to these to obtain contradiction. However, the specifics of deriving the AtLeastl
constraints depended on us starting from the 0 vertex, as this is required in
the encoding to be 0. There is nothing particularly special about the 0 vertex,
but without requiring some position label P; = 0 there would be n isomorphic
solutions to the PB model for each arbitrary choice of starting vertex in a cor-
responding solution to the CP model. For our justifications from Section [4] to
work, we need to be able to run ReachTooSmall(v) from an arbitrary vertex, and
so we need a way to start the breadth-first search for possible positions without
necessarily knowing with the position of the first node might be.

The idea is to dynamically introduce a new set of position labels {g[r,i] : 1 <
i < n} for a given starting vertex r, that are tied to the value of the P; variables
but represent what would be obtained if the value of each P; was shifted back
modulo n so that P, = 0. Specifically we should have ¢[r,i] = P; — P, mod n.
This preserves the useful property that if X; = j then ¢[r, j] = ¢[r,i] + 1 mod n,
as is true for the p variables. By construction we must have g[r,r] = 0, and so
we should be able to collect sets of possible g[r,] variables for each subsequent
value and use this to construct our ReachTooSmall argument as before.

As with the other auxiliary variables, flags for these g variables can be intro-
duced in the proof as needed using VeriPB’s redundance-based strengthening
rule. We do require some additional d[r,i] flags to encode the definitions in
pseudo-Boolean form, to correct for when the difference P; — P, is less than 0.
Specifically, whenever we require a variable ¢[r, |- we introduce the following.

dlr,i] = P — P, >1 (21)
dr,i] = P, —P.>1 (22)
qr,il>r = P, — P, +nd[r,i] >k (23)
qlr >k == qlryilsr +qlr s, 22 (24)

These can each be introduced by redundance, and only need to be defined once
for each combination of r, i, and k. One technicality is that for the constraint
we do require a subproof that establishes P; # P, in order to apply redun-
dance, but this is straightforward since we can pay a one-time cost to recover an
AlIDifferent constraint (AtLeastl and AtMostl constraints) over the p variables
at the very start of the proof.

With these in place, we can outline the general procedure for constructing
a ReachTooSmall argument from an arbitrary vertex, which is shown in Algo-
rithm @ All of the statements marked with derive can be derived from the
PB model and the previous statements either with a single RUP step, or by a
sequence of cutting planes steps followed by a RUP step. For lines[10} [I2] and [23]
this is just adding up the defining constraints for the auxiliary variables involved
so that any p and d variables cancel out—we omit the details for brevity.

Proof Logging for the Circuit Constraint 13

Algorithm 2 Procedure for constructing the proof, ReachToSmall(r), showing
that a sequence of guesses A G imply contradiction.

1: derive q[r,r]=0 >0
2: reached < {r}; lastReached < {r}; valuesSeen[r| + {0}; k<« 1
3: while k < |reached]

4: newReached < ()

5: for i € lastReached

6: for j € domain(z[i])

T: newReached < newReached U {j}

8: valuesSeen[j] < valuesSeen[j] U {k}

9: if j#r

10: . derive g[r,il-r—1 Ax[i]l=; = q[r,jl=x =1 © Add defs. and RUP
11: else

12: derive q[r,i]-x1 Az[i]l; = 0>1 > Add defs. and RUP
13: derive AG — Ejedomain(m[i]) zli]=; > 1 > RUP
14: > Add up Zme: with all constraints last derived at /7’71(?5 (m(l N
15: derive A G A q[r,i]l=k—1 = Zjedomain(z[i]) qlr,jl=x >1

16: > AL1 constraint: Add up last AL1 constraint and all lines last derived (1,/, N
17: derive /\g - ZjEnewReaChed q[”” J]:k 2 1

18: lastReached <— newReached; reached < reached U newReached

19: |, k<« k+1

20: for j < Oton
21: if valuesSeen[i] # ()

22: for (I,k) € valuesSeen[j] X valuesSeen[j] where [< k

23: L derive q[r, j]_, + q[r,j]_, > 1 > NotBoth constraint: Add up definitions

24: > AM1I constraint: Add up NotBoth constraints, dividing by i after each
step adding the iy, NothBoth constraint <

25: derive EkEValuesSeen[j] —q[r, J]:k 2 -1

26: derive NG — 0>1 > Add up ALI1 and AMI1 constraints.

4.3 Proving Reach is Too Small with Assumptions

The procedure outlined in Algorithm [2| requires minimal modification to work
with assignment assumptions. Assuming X; = j or X; # j means including a PB
variable encoding the assumption as an additional guess in A G, and skipping any
domain values excluded by this assumption (either trivially or by AllDifferent)
when iterating through the domains on line [f] This will allow the procedure to
derive AG A zfil-; = 0>1or AGAz[i]_, = 0> 1, as required.

More care is required to encode and use ordering assumptions as discussed in
Section |4l If we want to force the ReachTooSmall(r) to assume that r < a < b,

14 M. J. Mcllree et al.

that is, a vertex a must be visited before b when following a path from r, we
first have to encode this assumption and reify it with its own flag. We can use

auxiliary variables d[i, j], defined as in |(21)| and to do this:

Qr<a<b <= dlr,a] + d[a,b] + d[b,r] > 2 (25)

We can then include a,~,<p as an additional “guess" and use it to exclude
q[r, b)=r from any Atleastl constraint where, for ¥ < k, g[r, al=; was not part
of a previous AtlLeastl. This is achieved by deriving g[r,a]>1 after, line 1, and
subsequently ¢[r, a] > after line and using these to derive a,<q<pAQ[T, i]=g+1 /A
x[i]l=p = 0 > 1 instead of line [10] whenever j = b. Once again these each
amount to steps adding up definition constraints, followed by a RUP step, and
we omit the details for brevity.

We note that the encoding of ordering assumptions allows the justifica-
tion of the prune skip inference with two conditional ReachTooSmall arguments,
as discussed in Section[dl When ReachTooSmall arrives at a contradiction under
an ordering assumption, the negation is established, and we can add up defini-
tions for e.g. @j<r<wvy, Gr<i<uvg, &[t)=; to cancel out p and d variables and arrive
at a final contradiction for this inference.

5 Implementation and Evaluation

We have implemented proof logging versions of the check, prevent and SCC
propagators (with all inference rules discussed in Section using the tech-
niques described in this paper as part of the auditable Glasgow Constraint Solver
project |24], and we included in our implementation all the inference methods
available in the Circuit propagators of Gecode |14]. We tested our implemen-
tatimﬂ by solving randomly generated travelling salesperson problems (TSPs),
with graphs ranging in size from 3 to 40 vertices. The potential of proof logging
as a powerful debugging and development tool was immediately apparent from

3 |https://zenodo.org/records,/ 10848992

G 200 7 ® — y=100x
g E 7]
5 o 150 o 30 8
S £ £
s = 2
8 5 100 - 205
o - j—
© (]
< O o
S £ 50 [S
o 2 10 2
£
[0 4
T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Time without proof logging (s) Time without proof logging (s)

Figure 3: Scatter plot of results of solving randomly generated TSP instances.

https://zenodo.org/records/10848992

Proof Logging for the Circuit Constraint 15

this, as initial proof failures immediately indicated bugs in our implementation
such as prevent trying to disallow full circuits in certain situations, or SCC trying
to apply an incorrect inference based on the structure of the graph. This aligns
with the results of previous research projects, where the implementation of proof
logging uncovered hard-to-find bugs in well-tested combinatorial solvers [1/5/[20].
Once the bugs were addressed, all proofs were verified as correct using VeriPB.
The performance data from our evaluation is shown in Figure [3]

There is clearly a cost in terms of overhead from enabling proof logging, al-
though the exact slowdown is very dependent on hardware since we are writing to
disk and using a non-optimised text-based proof format. What is clear is that the
overhead is not unreasonable, with time to produce the proofs scaling roughly in
proportion the time taken to solve without proof logging. This is what we would
expect: our proof procedures for check and prevent output exactly one sequence
of cutting planes steps for each subcycle prevented or disallowed, and so clearly
are not doing significantly more work than the propagators themselves. Simi-
larly, the ReachTooSmall procedure is called once for every inference (except
the “prune skip” inference where it is called twice) and can at worst generate a
number of proof steps proportional to n - E where E' is the number of edges cur-
rently encoded by the domains of variables. Since Tarjan’s algorithm itself runs
in O(n + E), we are satisfied that we are roughly within a linear factor of the
amount of work done by the propagator and that our proof logging procedure is
practical and free from any exponential blow up.

Additionally, we tested the TSP instance from the MiniCP benchmark suite
of Michel et al. [26]. This was created for testing CP solver speed, and took
the Glasgow Constraint Solver 44.9407 seconds to solve without proof logging
(using full Circuit and AllDifferent propagation, not the simple propagation used
by MiniCP). With proof logging, it took 3603.84 seconds (~ 1 hour) to solve,
and VeriPB needed 585893.41 seconds (~ 1 week) to verify the produced proof.
This, together with previously implemented constraints |16], brings the Glasgow
Constraint Solver in line with MiniCP in terms of propagators implemented and
instance modelling capabilities.

6 Conclusion

We have exhibited the first certifying Circuit propagator using VeriPB proof log-
ging, showing that ad-hoc inference rules with complicated notions of consistency
can be included in an auditable constraint solver. In particular, we found that
a range of standard inference types could make use of similar proof procedures,
taking advantage of concepts such as connectedness and vertex ordering despite
the proof system having no native representantions of these notions, or even
of a graph. We expect that the core concepts exemplified here: such as count-
ing reachable vertices under implications; creating shifted auxiliary labels; and
running proof procedures under ordering assumptions will be useful for other
constraints, and for proof logging combinatorial solving more generally.

16

M. J. Mcllree et al.

Acknowledgements Ciaran McCreesh was supported by a Royal Academy of
Engineering research fellowship, and by the Engineering and Physical Sciences
Research Council [grant number EP/X030032/1]. Jakob Nordstrém was sup-
ported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B. For the purpose of open access, the
authors have applied a creative commons attribution (CC BY) licence to any
author accepted manuscript version arising from this work.

References

10.

Berg, J., Bogaerts, B., Nordstrom, J., Oertel, A., Vandesande, D.: Certified core-
guided MaxSAT solving. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction -
CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy,
July 1-4, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14132, pp.
1-22. Springer (2023). https://doi.org/10.1007/978-3-031-38499-8 1, https://doi.
org/10.1007,/978-3-031-38499-8 1

Bogaerts, B., Gocht, S., McCreesh, C., Nordstréom, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. Journal of Artificial Intelli-
gence Research 77, 1539-1589 (Aug 2023), preliminary version in AAAT '22
Buss, S.R., Nordstrém, J.: Proof complexity and SAT solving. In: Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, vol. 336, chap. 7, pp. 233-350. IOS Press,
2nd edn. (Feb 2021)

Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Naish, L. (ed.)
Logic Programming, Proceedings of the Fourteenth International Conference on
Logic Programming, Leuven, Belgium, July 8-11, 1997. pp. 316-330. MIT Press
(1997)

Cheung, K.K.H., Gleixner, A.M., Steffy, D.E.: Verifying integer programming re-
sults. In: Eisenbrand, F., Kénemann, J. (eds.) Integer Programming and Combi-
natorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10328, pp. 148-160. Springer (2017). https://doi.org/10.1007/978-3-319-59250-3
13| https://doi.org/10.1007/978-3-319-59250-3 13

Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed, a
lazy clause generation solver (2023), https://github.com/chuffed/chuffed

Cook, W., Coullard, C.R., Turan, Gy.: On the complexity of cutting-plane proofs.
Discrete Applied Mathematics 18(1), 25-38 (Sep 1987). https://doi.org/10.1016/
0166-218X(87)90039-4

Cruz-Filipe, L., Heule, M.J.H., Hunt Jr, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient Certified RAT Verification. In: de Moura, L. (ed.) Automated Deduction —
CADE 26. pp. 220-236. Lecture Notes in Computer Science, Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 14

Di Gaspero, L., Urli, T.: A CP/LNS Approach for Multi-day Homecare Scheduling
Problems. In: Blesa, M.J., Blum, C., Vog, S. (eds.) Hybrid Metaheuristics. pp. 1-
15. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2014). https://doi.org /10.1007/978-3-319-07644-7 1

Elffers, J., Gocht, S., McCreesh, C., Nordstrém, J.: Justifying All Differences Using
Pseudo-Boolean Reasoning. In: The Thirty-Fourth AAAT Conference on Artificial

https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-07644-7_1
https://doi.org/10.1007/978-3-319-07644-7_1

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Proof Logging for the Circuit Constraint 17

Intelligence, AAAT 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, TAAT 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. pp. 1486-1494. AAAT Press (2020)

Fages, J.G., Lorca, X.: Improving the Asymmetric TSP by Considering Graph
Structure (Jun 2012). https://doi.org/10.48550/arXiv.1206.3437

Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1-29 (Jan 2014). https://doi.org,/10.1007/s10601-013-9148-0

Gaspero, L.D., Rendl, A., Urli, T.: Balancing bike sharing systems with constraint
programming. Constraints 21(2), 318-348 (Apr 2016). https://doi.org/10.1007/
s10601-015-9182-1

Gecode Team: Gecode: Generic constraint development environment (2023), http:
/ /www.gecode.org

Gocht, S.: Certifying Correctness for Combinatorial Algorithms: By Using Pseudo-
Boolean Reasoning. Ph.D. thesis, Lund University, Sweden (2022)

Gocht, S., McCreesh, C., Nordstréom, J.: An Auditable Constraint Programming
Solver. In: Solnon, C. (ed.) Proceeding of the 28th International Conference on
Principles and Practice of Constraint Programming. Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 235, pp. 25:1-25:18. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2022). |https://doi.org/10.
4230/LIPIcs.CP.2022.25

Heule, M.J.H.: Chinese Remainder Encoding for Hamiltonian Cycles. In: Li, C.M.,
Manya, F. (eds.) Theory and Applications of Satisfiability Testing - SAT 2021
- 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12831, pp. 216—224. Springer (2021). https:
//doi.org/10.1007/978-3-030-80223-3 15

Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theoretical Computer Science 447, 74-84 (Aug 2012).
https://doi.org/10.1016/j.tcs.2011.11.011

Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations:
Proceedings of a Symposium on the Complexity of Computer Computations, Held
March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and Sponsored by the Office of Naval Research, Mathematics
Program, IBM World Trade Corporation, and the IBM Research Mathematical
Sciences Department, pp. 85-103. The IBM Research Symposia Series, Springer
US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

Kraiczy, S., McCreesh, C.: Solving graph homomorphism and subgraph isomor-
phism problems faster through clique neighbourhood constraints. In: Zhou, Z.
(ed.) Proceedings of the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021.
pp. 1396-1402. ijcai.org (2021). https://doi.org/10.24963 /IJCAI.2021/193, https:
//doi.org/10.24963 /ijcai.2021,/193

Kuchcinski, K., Szymanek, R.: JaCoP - Java Constraint Programming Solver. In:
CP Solvers: Modeling, Applications, Integration, and Standardization, co-located
with the 19th International Conference on Principles and Practice of Constraint
Programming (2013)

Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21(3), 394-412 (Jul 2016).
https://doi.org/10.1007/s10601-016-9241-2

https://doi.org/10.48550/arXiv.1206.3437
https://doi.org/10.48550/arXiv.1206.3437
https://doi.org/10.1007/s10601-013-9148-0
https://doi.org/10.1007/s10601-013-9148-0
https://doi.org/10.1007/s10601-015-9182-1
https://doi.org/10.1007/s10601-015-9182-1
https://doi.org/10.1007/s10601-015-9182-1
https://doi.org/10.1007/s10601-015-9182-1
http://www.gecode.org
http://www.gecode.org
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.24963/IJCAI.2021/193
https://doi.org/10.24963/IJCAI.2021/193
https://doi.org/10.24963/ijcai.2021/193
https://doi.org/10.24963/ijcai.2021/193
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/s10601-016-9241-2

18

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. J. Mcllree et al.

Lam, E., Van Hentenryck, P., Kilby, P.: Joint Vehicle and Crew Routing and
Scheduling. In: Principles and Practice of Constraint Programming : 21st Interna-
tional Conference, CP 2015 Cork, Ireland, August 31 — September 4, 2015 Proceed-
ings. pp. 654-670. Springer (2015). https://doi.org/10.1007/978-3-319-23219-5 45
McCreesh, C., Mcllree, M.: The Glasgow Constraint Solver. GitHub repository
(2023), |https://github.com/ciaranm /glasgow-constraint-solver

Mecllree, M.J., McCreesh, C.: Proof logging for smart extensional constraints. In:
Yap, R.H.C. (ed.) 29th International Conference on Principles and Practice of Con-
straint Programming (CP 2023). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 280, pp. 26:1-26:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik, Dagstuhl, Germany (2023). |https://doi.org/10.4230/LIPIcs.CP.2023.26
Michel, L.D., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for
constraint programming. Math. Program. Comput. 13(1), 133-184 (2021). https://
doi.org/10.1007 /s12532-020-00190-7, |https: / /doi.org/10.1007 /s12532-020-00190-7
Ohrimenko, O., Stuckey, P.J.; Codish, M.: Propagation = lazy clause generation.
In: Bessiere, C. (ed.) Principles and Practice of Constraint Programming - CP
2007, 13th International Conference, CP 2007, Providence, RI, USA, September
23-27, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4741, pp. 544—
558. Springer (2007). [https://doi.org/10.1007/978-3-540-74970-7 39} https://doi.
org/10.1007/978-3-540-74970-7 39

Perron, L., Didier, F.: CP-SAT, https://developers.google.com/optimization/cp/
cp_solver/

Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An Exact Constraint Logic
Programming Algorithm for the Traveling Salesman Problem with Time Windows.
Transportation Science 32(1), 12-29 (Feb 1998). https://doi.org/10.1287 /trsc.32.
1.12

Schulte, C., Tack, G.: Weakly Monotonic Propagators. In: Gent, I.P. (ed.) Prin-
ciples and Practice of Constraint Programming - CP 2009. pp. 723-730. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04244-7 56

Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing 1(2), 146-160 (Jun 1972). https://doi.org/10.1137,/0201010

Wetzler, N., Heule, M.J.H., Hunt Jr, W.A.: DRAT-trim: Efficient Checking and
Trimming Using Expressive Clausal Proofs. In: Sinz, C., Egly, U. (eds.) Theory
and Applications of Satisfiability Testing — SAT 2014. pp. 422-429. Lecture Notes
in Computer Science, Springer International Publishing, Cham (2014). https://
doi.org/10.1007/978-3-319-09284-3 31

Zhou, N.F.: In Pursuit of an Efficient SAT Encoding for the Hamiltonian Cycle
Problem. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming.
vol. 12333, pp. 585-602. Springer International Publishing, Cham (2020). https:
//doi.org/10.1007/978-3-030-58475-7 34

https://doi.org/10.1007/978-3-319-23219-5_45
https://doi.org/10.1007/978-3-319-23219-5_45
https://github.com/ciaranm/glasgow-constraint-solver
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.1007/978-3-540-74970-7_39
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1007/978-3-642-04244-7_56
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34

	Proof Logging for the Circuit Constraint

