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Abstract
Proof logging provides an auditable way of guaranteeing that a solver has produced a correct answer
using sound reasoning. This is standard practice for Boolean satisfiability solving, but for constraint
programming, a challenge is that every propagator must be able to justify all inferences it performs.
Here we demonstrate how to support proof logging for a wide range of previously uncertified global
constraints. We do this by showing how to justify every inference that could be performed by the
propagation algorithms for two families of generalised extensional constraint: “Smart Table” and
“Regular Language Membership”.
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1 Introduction

A proof log for a problem-solving algorithm provides a verifiable certificate that the result
is correct, and also an auditable record of the steps taken to obtain that result. In the
field of Boolean satisfiability (SAT), proof-logging has become an expected capability of
modern solvers, with a series of proof formats including DRAT [12, 13], LRAT [7], and FRAT
[2] widely accepted for independent verification. A similar standard practice has not yet
been adopted for Constraint Programming (CP) due to the difficulties of creating easily
verifiable proofs for the more expressive formulations and reasoning present in this paradigm.
However, recent work by Gocht et al. [10] has shown how the VeriPB proof system [3, 9]
can be used to certify the reasoning carried out for several important expressive global
constraints, offering a strong candidate for a complete, general CP proof logging method. In
this setting, every propagator for a global constraint must be able to do two things: describe
its semantics in a lower-level pseudo-Boolean format, and justify any reasoning it carries out
using either cutting planes [6] or reverse unit propagation (RUP) [11] reasoning. Describing
a constraint’s semantics is a well-understood problem, but justifying propagation is not.
Gocht et al. demonstrated proof logging for a range of global constraints and propagation
strengths, including bounds-consistent integer linear inequalities and domain-consistent table
constraints, but it remains an open question whether every global constraint propagation
algorithm can be justified in this manner.

This paper shows that the reasoning carried out by domain-consistent propagators for
the SmartTable [16] and Regular [19] constraints can similarly be proof logged efficiently
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inside the VeriPB proof system. As well as being useful in their own right, these two
constraints provide the necessary building blocks for implementing many others, since they
allow for efficient strong propagation for extensional constraints that cannot be expressed
efficiently as a conventional table. For example, SmartTable can be used to implement the
Lex, AtMostOne and NotAllEqual constraints [16], whilst Regular can be used to implement
Stretch, Geost and DiffN [15, 19]. Together, these two new constraints bring us a lot closer
to fully auditable combinatorial solving, particularly in areas such as workforce scheduling
where legal restrictions apply, and where algorithmic decisions can have a large effect upon
people’s livelihoods.

2 An Overview of How Proof Logging Works

The VeriPB proof system is built upon pseudo-Boolean (PB) problems. A PB model is a
restricted constraint satisfaction problem, where all variables xi have domain {0, 1} and all
constraints are integer linear inequalities of the format

∑
i ciℓi ≥ A where ci, A ∈ Z, and

each ℓi is a pseudo-Boolean literal: either a variable x or its negation x̄ = 1 − x. For clarity
and by convention we will always refer to CP variables with upper-case symbols and PB
variables with lower-case symbols. Additionally, to save space and make the meaning clearer
we will make use of reified PB constraint shorthands:

(ℓ1 ∧ · · · ∧ ℓm) =⇒
∑

i cixi ≥ A means
∑n

i=1 cixi + Jℓ̄1 + · · · + Jℓ̄m ≥ A where J is
chosen to be suitably large, e.g. J = A −

∑n
i=1 min(ci, 0).∑

i cixi ≥ A =⇒ (ℓ1 ∧ · · · ∧ ℓm) means
{∑n

i=1 −cixi + Kℓ̄t ≥ −A + 1 : 1 ≤ t ≤ m
}

where K is chosen to be suitably large, e.g. K = −A + 1 −
∑n

i=1 min(ci, 0).
(ℓ1 ∧ . . . ∧ ℓm) ⇐⇒

∑
i cixi ≥ A means both of the above together.

PB constraints can also be viewed as a superset of conjunctive-normal form (CNF) for
SAT problems, since a clause such as x1 ∨ x̄2 ∨ x3 is always equivalent to a PB constraint
such as x1 + x̄2 + x3 ≥ 1. This means that it is straightforward to generalise known SAT
encodings of CP constraints to PB. The concept of unit propagation from SAT can also
be generalised to a PB setting. We say a PB constraint propagates a literal ℓ if it cannot
possibly be satisfied unless ℓ = 1. For the “at least 1” constraints that can be viewed as
clauses, this is the same as SAT unit propagation, but in general it is enforcing integer
bounds consistency [5] on the PB inequalities. The (generalised) notion of unit propagation
for PB constraints is therefore repeatedly setting any literals that propagate until either a
contradiction or a fixed point is reached.

An auditable constraint solver following the proof-logging methodology of Gocht et al. [10]
must be able to produce a pseudo-Boolean representation of the problem being solved, and
then justify its backtracking and inference steps in a proof log by outputting further PB
constraints derivable by one of the proof rules allowed by the VeriPB proof checker. The
full proof system associated with VeriPB is described in detail by Bogaerts et al. [3], but
for the purposes of this paper the only rule that is needed is the reverse unit propagation
(RUP) rule, which says that a PB constraint D is derivable from a set of PB constraints F if
applying the pseudo-Boolean generalisation of unit propagation (repeated integer bounds
consistency) to F ∪ D̄ results in a contradiction. Intuitively, it is a constraint that “obviously”
follows once it is pointed out to the verifier.

This paper will omit discussion of how the variables and constraints of CP problem can
be represented as PB constraints and variables in general, focussing specifically on how
Regular and SmartTable can be represented. We will assume that we have access to a
collection of properly defined PB variables xbneg, xb0, xb1, xb2 . . . representing bits in the
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two’s-complement encoding of a CP variable X (with suitable constraints to enforce the
domain), but also that we can freely use flags of the form x=v, which are defined to equal 1
if and only if X = v. Explanation of how these encodings can be achieved is given by Gocht
et al. [10].

Similarly, we will omit detailed discussion of how complete proofs of solutions, unsatisfiab-
ility, optimality, or enumeration are achieved. We simply note that each proof is essentially
a description of the solver’s backtracking search tree. Any time the solver backtracks, a
RUP constraint that encodes the negated conjunction of the currently guessed assignments
is emitted. A new propagation algorithm can fit into this existing framework by ensuring
that the encoding of any specific filtering and failure inferences it makes are visible to the
verifier on reverse unit propagation of the backtrack constraint. So for example, if a solver
has guessed A = 2, B = 1; and a propagator is able to infer C ̸= 1 then the proof logging
methodology requires that the PB constraint

ā=2 + b̄=1 + c̄=1 ≥ 1 (1)

is somehow derived, which can be interpreted as

ā=2 ∨ b̄=1 ∨ c̄=1 i.e. A = 2 ∧ B = 1 =⇒ C ̸= 1. (2)

This is in many ways similar to how lazy clause generating solvers work [18], except that the
new constraints introduced must be justified, rather than asserted.

3 Proof Logging for Smart Table Constraints

A smart table constraint generalises the idea of a table constraint to allow wildcards and
comparisons, allowing for compact representations for a much larger set of relations, whilst
still retaining an efficient domain-consistent propagator [16, 20, 21]. There are several ways
to define SmartTable (also called HybridTable), depending on which restriction types are
allowed within tuples [4]. In this work we restrict our focus to unary comparisons, binary
comparisons, and set membership, and define SmartTable as follows.

▶ Definition 1. Smart Table Constraint
Let X be a sequence of finite-domain variables ⟨X1, . . . , Xn⟩. A smart entry constraint is a

unary or binary constraint in one of three possible forms:
1. <var> <op> a

2. <var> ∈ S or <var> /∈ S

3. <var> <op> <var>

where a is an integer constant, S is a set of integer constants, <op> denotes an operator
in the set {<, ≤, =, ̸=, ≥, >}, and <var> denotes a variable. A smart tuple is a set of these
smart entry constraints, and a smart table is a set of smart tuples. When a variable does not
appear in a given tuple, it is implicitly unrestricted (equivalent to a wildcard entry).

For a given smart table T , where the scope of every smart entry constraint is a subset of
X, a smart table constraint SmartTable(X, T ) requires that there is at least one smart tuple
in T where every smart entry constraint holds. It can hence be thought of as a special case of
a disjunction of conjunctions of simple constraints.

3.1 PB Encodings for Smart Table Constraints
Recall that in order to support proof logging for a constraint, we must be able to describe its
semantics in a lower-level PB form. Let T be a smart table with smart tuples σ1, . . . , σk. We
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can encode the SmartTable constraint by making use of some auxiliary PB variables. For
each smart tuple σi in the table we will have a selector PB variable si that controls whether
the tuple is active (i.e. not yet infeasible). Then for each smart entry Cj ∈ σ we will have a
PB variable eij that is set to 1 if and only the constraint Cj is satisfied, which we denote by
satisfied(Cj).

Since smart entries are themselves simple binary and unary constraints, with all of them
having PB encodings that already well understood, the process of encoding this satisfied
property is straightforward. Inequalities on one or two variables can be encoded by imposing
the inequality on the evaluation of the bit encodings. For example, for two CP variable A

and B both with domain {1, . . . 7}, and recalling that PB variables abi and bbi denote the ith
bits in the encoding of the variables A and B, we would have

satisfied(A < B) := −ab0 − 2ab1 − 4ab2 + bb0 + 2bb1 + 4bb2 ≥ 1. (3)

Other inequality constraints can be handled similarly, adding or subtracting constants
from the right-hand side as necessary. For ∈ and /∈ it is simply a case of imposing “at least
n” constraints on the flags representing the disallowed values, e.g.

satisfied(A ∈ {1, 3, 5}) := ā=2 + ā=4 + ā=6 + ā=7 ≥ 4, (4)
satisfied(B /∈ {1, 3, 5}) := b̄=1 + b̄=3 + b̄=5 ≥ 3. (5)

Finally, for = and ̸= we can make direct use of the x=v flag if the right-hand side is a
value. If the right-hand side is instead another variable we make use of further intermediate
flags to express the relation in terms of strict or non-strict inequalities, so:

satisfied(A = B) := fA≥B + fA≤B ≥ 2, (6)
satisfied(A ̸= B) := fA>B + fA<B ≥ 1, (7)

where the flags are enforced with two-way implication, e.g.

fA<B ⇐⇒ satisfied(A < B). (8)

Obviously, the negation of these encodings can be expressed by encoding the negation of
the constraint, e.g.

¬satisfied(A < B) := satisfied(A ≥ B), (9)
¬satisfied(A ̸= B) := satisfied(A = B). (10)

With the procedures for each of these smart entry constraint encodings in place, and
recalling that we know how to reify arbitrary PB constraints on a literal, the PB model for
smart table can then be created according to the following specification.

▶ Encoding 1. Smart Table PB Encoding

1: for all σi ∈ T

2: for all C ∈ σi

3: eC ⇐⇒ satisfied(C)
4: si ⇐⇒

∑
C∈σi

eC ≥ |σi|
5: s1 + s2 + · · · + s|T | ≥ 1
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3.2 Justifying Smart Table Propagation
The goal of the propagator for the smart table constraint, as with many global constraint
propagators, is to achieve domain consistency. As a running example, suppose we had a
smart table constraint on three variables, A, B, C, all with domains {1, 2, 3}, defined by the
following table T with two tuples:

T := {σ1, σ2}; σ1 = {(A < B), (A ∈ {1, 2}), (C = 3)}, (11)
σ2 = {(A = B), (A ̸= 1), (B ≥ C)}. (12)

By inspection, we can observe that the literal B = 1 does not have any support on this
constraint, as it would contradict A < B on the first tuple and A = B, A ̸= 1 together on
the second. Therefore, a propagation algorithm that achieves domain consistency should
immediately remove the value 1 from the domain of B.

The propagation algorithm described by Mairy et al. [16] uses a “Simple Tabular
Reduction” strategy to eliminate such unsupported values. Essentially it initialises a set sl
(for “supportless”) with every variable value/pair that is possible given the current domains
of variables, and then iterates through the tuples, removing any values that they in turn
support. The literals that are left in sl are not supported by any tuple and hence the ones
that should be eliminated. A key observation is that each smart tuple σ, as a conjunction
of simple constraints, can be thought of as a small CSP Pσ in its own right, and so the
supported values are just all the solutions for this problem. It is shown that as long as the
constraint graph of Pσ is acyclic it can be effectively filtered as a collection of tree CSPs via
a two pass filtering process. Due to the restricted structure of the smart tuples, the result
of this is a collection of copies of the domains where the only values present are those that
appear in some solution (global consistency for Pσ), and so this can be used to remove values
from sl in polynomial time.

For proof logging, the main concern is then how to justify the elimination of these
unsupported values. In particular, for a sequence of guesses G and newly derived unsupported
assignment X ̸= v, we would like to log the PB constraint

∧G =⇒ x̄=v ≥ 1. (13)

In some situations this might follow directly by reverse unit propagation, as is always
the case for proof-logging the classical table constraint as shown by Gocht et al. [10]. For
smart tables, however, we can show that more work is required in general. Going back to
the previous example and following Encoding 1, we note that if we try to derive b̄=1 ≥ 1 by
reverse unit propagation, we do not reach a contradiction after propagating its negation b=1.
This is despite B = 1 lacking support in the table. To see why this is the case, note that the
only way unit propagation of a non-auxiliary literal such as b=1 could falsify the whole model
would be for it to eventually result in all the selectors si being falsified. In turn, the only way
that could happen is for there to be at least one eiC falsified for every i ∈ {1, . . . , |T |}. We
can observe that this does not happen on propagation of b=1. The smart entry constraints
that are responsible for eliminating (B = 1)’s support are A < B in the first tuple and both
A = B, A ≠ 1 in the second. From Encoding 1, the first of these is present in the PB model
in the form of two constraints:

eA<B =⇒ bb0 + 2bb1 − ab0 − 2ab1 ≥ 1; (14)
ēA<B =⇒ −bb0 − 2bb1 + ab0 + 2ab1 ≥ 1. (15)
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Assuming the bit encodings are correctly defined, propagating b=1 should propagate bb0 and
b̄b1, meaning (14) is reduced to

eA<B =⇒ 1 − ab0 − 2ab1 ≥ 1. (16)

Now it might seem that ēA<B would then propagate, as we know ab0 + 2ab1 is at least 1 due
to the domain constraints of the variable A and so the right-hand side of the implication in
(16) must be false. However, because the falsity does not follow from a contradiction intrinsic
to the PB itself—in isolation it can be satisfied by having both bb0 and bb1 equal to 0—unit
propagation alone is not strong enough to determine that ēA<B must follow. A similar
problem holds for the other tuple, where the contradiction arises due to two constraints being
incompatible rather than just one being falsified.

Fortunately, we can ensure that the desired constraints do follow by RUP by first explicitly
deriving some intermediate proof steps. For a sequence of guesses G and newly derived
unsupported assignment X ̸= v, instead of simply logging the PB constraint (13) as above,
we first log

∧G =⇒ x̄=v + s̄k ≥ 1 (17)

for each k ∈ {1, . . . , |T |}, i.e. first show by RUP that no tuple selector can be set to true
without contradiction, and then derive from these the desired constraint (13). So in our
running example, we would log

b̄=1 + s̄1 ≥ 1; b̄=1 + s̄2 ≥ 1; b̄=1 ≥ 1. (18)

This is now sufficient for most cases, however, it is still possible to construct examples where
even these constraints in the form of (17) do not follow by RUP. Suppose we have four
variables W, X, Y, Z, all with domain {−2, −1, 0}, and then a single smart tuple of the form

(W < X), (X < Y ), (Y < Z). (19)

Clearly this is unsatisfiable, and so in particular W = −2 should be unsupported by the
tuple. But the constraint

w̄=−2 + s̄1 ≥ 1 (20)

does not unit propagate to contradiction. This can be seen by considering the PB encoding
of the first smart entry constraint,

eW <X ⇐⇒ −2xbneg + xb0 + 2wbneg − wb0 ≥ 1. (21)

The negation of (20) will lead to eW <X , wbneg, and w̄b0 being propagated, which would
mean the two PB constraints encoding both implication directions in (21) are reduced to

−2xbneg + xb0 ≥ −1; and 2xbneg − xb0 ≥ −1. (22)

But then no further propagation results from these constraints, which can be seen either
by calculating the slack value (see Elffers et al. [8]), or simply by observing that the value
sets {0, 0}, {1, 1}, {0, 1} would each satisfy both constraints if assigned to {xbneg, xb0} and so
both 0 and 1 are both supported possibilities for each variable. None of the other constraints
contain bit variables for W and so it is clear that no propagation will result from these either,
and hence no contradiction will be reached.
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This weak propagation is not surprising given the context given by Gocht et al. [10],
where integer linear inequality constraints need to log all the inferences made when enforcing
domain consistency and cannot rely on the disallowed values being implicit. Fortunately for
us, these same inferences are being made in the solver as part of the smart table propagator
anyway, at the tree filtering stage, and so the desired constraints in the form of (17) and then
(13) can still be logged providing we have first logged the inferences for binary constraints
explicitly. The only difference in proof logging these and the proof logging of equality and
inequality constraints described by Gocht et al. [10] is that each inference will be conditional
on a tuple selector. For example, if a variable B has domain with maximum value l and the
filtering process for A < B updates the domain copy for A so that A < l, then we would log

∧G =⇒ s̄1 + a<l ≥ 1; (23)

where the flag a<l can be introduced via reification with corresponding constraints on the
bit variables.

We can now be confident we have a complete proof logging procedure. We can show by
an inductive argument on the binary representation that the PB constraints that encode
the filtering inferences made by simple binary constraints such as (23) will always be RUP,
providing they are logged in the same order as they are made by the solver. Then, any
unsupported value must be unsupported in every tuple, and hence removed in the filtering
process for some smart entry constraint. Given the negation of this removal, i.e. a variable
being equal to some unsupported value, if it was removed due to a binary constraint then we
have already logged a corresponding contradicting restriction and hence will unit propagate
to contradiction. Otherwise, if it was removed due to a unary constraint it will propagate to
contradiction immediately as the assignment will contradict a single PB constraint.

3.3 A Complete Worked Example for Smart Table Propagation
To demonstrate how this procedure works on a single round of the domain-consistent smart
table propagator we will now show all the steps required for the running example. Firstly, we
will have the PB constraints encoding that the of the domains of A, B, C are all {1, 2, 3}, i.e.

1 ≤ ab0 + 2ab1 + 4ab2 ≤ 3; 1 ≤ bb0 + 2bb1 + 4bb2 ≤ 3; 1 ≤ cb0 + 2cb1 + 4cb2 ≤ 3. (24)

Next we can follow Encoding 1 to encode the smart table constraint. First we have the
encodings of the four necessary auxiliary smart entry flags

eA<B ⇐⇒ bb0 + 2bb1 + 4bb2 − ab0 − 2ab1 − 4ab2 ≥ 1; (25a)

eA∈{1,2} =⇒ ā=3 ≥ 1; (25b)
ēA∈{1,2} =⇒ ā=1 + ā=2 ≥ 2; (25c)

fA>B ⇐⇒ ab0 + 2ab1 + 4ab2 − bb0 − 2bb1 − 4bb2 ≥ 1; (25d)
fA<B ⇐⇒ bb0 + 2bb1 + 4bb2 − ab0 − 2ab1 − 4ab2 ≥ 1; (25e)
eA=B ⇐⇒ f̄A>B + f̄A<B ≥ 2; (25f)

eB≥C ⇐⇒ bb0 + 2bb1 + 4bb2 − cb0 − 2cb1 − 4cb2 ≥ 0; (25g)

Then we can use these to encode the two tuples

s0 ⇐⇒ eA<B + eA∈{1,2} + c=3 ≥ 3; (25h)
s1 ⇐⇒ eA=B + ā=1 + eB≥C ≥ 3; (25i)
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B

CA

> ∈ {1, 2} = 3

(a) The graph for Pσ1 , which consists of two trees.

A C

B

=
≥

̸= 1

(b) The graph for Pσ2 , which consists of a single tree.

Figure 1 The constraint graphs for the two sub-CSPs Pσ1 and Pσ2 represented by the smart
tuples σ1 and σ2. Both graphs are acyclic and thus composed of trees.

And then finally we require

s0 + s1 ≥ 1. (25j)

Constraints that define the x=v flags are also included but are omitted here for brevity.
Now, for the domain-consistent propagator itself, we note that constraint networks of the

smart tuples do indeed form acyclic graphs and so the procedure is applicable. This can be
seen in Figure 1, where unary constraints are represented as edges to a dummy node. The
first tuple is clearly made up of two small trees, and the second consists of a single tree.

Initially all variables have {1, 2, 3} in their domains and the set of unsupported values sl

is set to:

sl = {A : 1, 2, 3; B : 1, 2, 3; C : 1, 2, 3} (26)

To find the set of values supported by Pσ1 we find the values supported by each tree
making it up. This involves two filtering passes over copies of the domain, working first from
the root outwards, and then back again.

Taking the left tree first, on the first pass 3 is removed from the domain copy for A and 1
from the domain of B due to A < B. So we would log

s̄0 + ā<3 ≥ 1; s̄0 + b̄>1 ≥ 1; (27)

as these inferences were made due to a binary constraint. No further inferences are made on
the second pass. This leaves the values

{A : 1, 2; B : 2, 3} (28)

supported by the first tree, and so these are removed from sl. Filtering the other tree simply
reduces the domain copy for C to {3}, and so C = 3 is removed from sl. No inferences need
to be logged here as this is a unary constraint. We now have

sl = {A : 3; B : 1; C : 1, 2} (29)

Moving on to the second tuple, no inference occurs on the first pass due to A = B nor
B ≥ C, but 1 is removed from the (fresh) domain copy for A due to the unary A ̸= 1 entry.
Then on the second pass, 1 is now removed from the domain copy for B due to A = B, and
so we log

s̄1 + b̄=1 ≥ 1; (30)

and then no further inference occurs. So the values occurring in some solution for this tree
are

{A : 2, 3; B : 2, 3; C : 1, 2, 3} (31)
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and so these can be removed from sl, leaving

sl = {B : 1}. (32)

Ultimately, B = 1 is the only assignment lacking support in the table after this initial
execution of the domain-consistent propagator and the only value to be removed from an
actual variable domain. We are then able to log the three constraints in (18) as discussed
above, and thus we have successfully maintained the required invariant for pseudo-Boolean
proof logging of this propagator.

4 Proof Logging for Regular Language Membership Constraints

A regular language provides another compact way of representing a constraint extension-
ally [19]. It is defined as follows.

▶ Definition 2. Regular Language Membership Constraint
Let X again be a sequence of finite-domain variables ⟨X1, . . . , Xn⟩ and let M = (Q, Σ, δ, q0, F )
denote a deterministic finite automaton (DFA), where

Q is a set of states;
q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states;
Σ is a set of symbols having the domain of every variable in X as a subset; and
δ : (Q × Σ) → Q is the transition function.

A regular language membership constraint Regular(X, M) requires that any sequence of
values taken by the variables of X must belong to the regular language recognised by M .

Throughout this section we will assume that the DFA is specified explicitly by a trusted
source. Verified compilation to create the constraint from a regular expression is left as
future work.

4.1 PB Encodings for Regular Language Membership Constraints
The Regular constraint is similarly easy to encode using auxiliary PB variables. If we let
M = (Q, Σ, δ, q0, F ) denote a deterministic finite automaton (DFA) and we impose a regular
constraint using this on n variables, we simply need to define flags rij that are set to true if
and only if the automaton is in the jth state at position before the (i + 1)th symbol of the
sequence is processed (including an additional set of flags rnj to denote the final state).

▶ Encoding 2. Regular Language Membership PB Encoding

1: for all i ∈ {0, . . . , n}
2: ri0 + · · · + ri|Q|−1 ≥ 1
3: −ri0 − · · · − ri|Q|−1 ≥ −1
4: for all i ∈ {0, · · · n − 1}, q ∈ Q, v ∈ Σ
5: if δ(q, v) is an allowed transition
6: riq ∧ xi=v =⇒ ri+1δ(q,v) ≥ 1
7: else
8: r̄iq + x̄i=v ≥ 1
9: r00 ≥ 1

10:
∑

f∈F r(n)f ≥ 1

This is a simpler version of the stronger SAT encoding for Regular given by Bacchus [1].
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4.2 Justifying Regular Propagation
As with SmartTable, the Regular propagator enforces domain consistency, and so our goal
once again is to log

∧G =⇒ x̄i=v ≥ 1 (33)

where G is the current sequences of guesses made by the solver, and Xi = v is an assignment
that is not supported by the regular language membership constraint. In particular, Xi = v is
not supported when there exists no sequence of symbols belonging to the language recognised
by M that has v as the ith symbol.

It is trivial to establish that this inference will not immediately follow by unit propagation,
which is unsurprising given the relative simplicity of the encoding. Just as we did for
SmartTable, we will have to log some additional facts during the execution of the propagation
algorithm.

We will consider here the original domain-consistent Regular propagator by Pesant [19],
on a constraint over a sequence of n variables X = ⟨X1 . . . , Xn⟩ and associated with a DFA
M = (Q, Σ, δ, q0, F ). This works by maintaining a layered, directed multigraph that has
n + 1 layers, with the ith layer having |Q| nodes qi

0, . . . qi
|Q|−1. The edges in this graph are

labelled with values in Σ, and are required to respect several properties that are satisfied
from the outset and then maintained through propagation. These are:
1. Edges can only appear between nodes in consecutive layers.
2. An edge labelled with the value v can only be included between nodes qi

k and nodes qi+1
l

if there exists a transition between the states numbered k and l in the DFA for a v, with
v currently in the domain of Xi.

3. Furthermore, every edge included must appear in a path from the node q0
0 (representing

the initial state) to a node representing a final state in the last layer.

The graph is constructed at the start of the solving process, and then updated increment-
ally during propagation to reflect changes in the variable domains and preserve the required
properties. It is clear then that once this is achieved, an assignment Xi = v loses support on
the regular constraint exactly when there are no edges labelled with v between nodes in the
ith and (i + 1)th layers.

The strategy for proof logging is then as follows. Every time an edge (qi
k, qi+1

l ) labelled
with the symbol v is removed by the propagation algorithm (or excluded when the graph is
first built), we log the PB constraint

∧G =⇒ r̄ik + x̄i=v ≥ 1, (34)

which can be interpreted as saying: “given these guesses, we can’t both be in state k after
we’ve processed the first i − 1 symbols, and have the ith symbol be v”. If we do this, then
when an assignment Xi = v loses support we will have logged a constraint in the form of (34)
for all riq where δ(q, v) is an allowed transition. Thus, the negation of (33) will result in r̄iq

being propagated for all q ∈ Q, and then this will contradict one of the constraints specified
by the second line of Encoding 2, which says that at least one riq must be set to 1. So with
these constraints in place we would be able to log our desired constraint (33) by RUP.

The problem is therefore reduced to that of deriving the constraints in the form of (34). It
turns out that these will either follow immediately by RUP, or require additional justification
depending on how the corresponding edge elimination is inferred by the propagation.

Edges are removed by the Regular propagator in one of three ways. Firstly, when
an assignment Xi = v has already been removed, either because another value has been
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guessed or because it has been eliminated by a propagator for another CP constraint, all the
edges extending from the ith layer labelled with value v are also removed. In this case the
corresponding constraints in (34) can be logged by RUP, as xi=v will immediately contradict
the guesses or previous inferences.

Secondly, when a particular node loses all of its outgoing edges, none of its incoming
edges can be part of a valid path and so should be removed. These removals occur recursively
in a backward pass (Algorithm 3 from Pesant [19]), so if a removed incoming edge was the
last outgoing edge of a node in a previous layer then the incoming edges of that previous
node are also removed, and so on. In this case too, the constraints in the form of (34) follow
by RUP. This can be shown inductively. Suppose all of the outgoing edges for a node qi

l

have been removed and the corresponding constraints in the form of (34) have already been
logged. Then for a given incoming edge (qi−1

k , qi
l) labelled with the value v, the negation of

the corresponding constraint in the form of (34) will entail rik, and since δ(qk, v) must be ql,
ril will then unit propagate by one of the constraint specified by line 6 of Encoding 2. Then,
since we have already eliminated all possible outgoing edges, we will propagate x̄i=v′ for all
v′ ∈ Σ, which will contradict the encoding of the variable Xi, as it must take at least one
value.

Finally, in the other direction, when a particular node loses all of its incoming edges,
similarly none of its outgoing edges can be part of a valid path and so should be removed.
These removals also occur recursively, this time in a forward pass (Algorithm 4 from
Pesant[19]). In contrast to the previous two cases, this inference requires more justification
as the desired constraint will not always follow by RUP, as is the case for (45) in the worked
example below. So when a state qi

l loses all of its incoming edges we first need to log the
constraints

∧G =⇒ r̄i−1k + r̄il ≥ 1 (35)

for each k ∈ {1, . . . , k}, which intuitively say that no previous state could lead to this state,
before logging constraints in the form of (34) for each outgoing edge. These constraints in
the form of (35) will all follow by RUP, since for every v ∈ Σ we either have a constraint

∧G =⇒ r̄i−1k + x̄i−1=v ≥ 1; (36)

from those in the form of (34) logged at the previous stage of the recursion; or there is a
constraint

∧G =⇒ x̄i−1=v ≥ 1; (37)

logged during earlier search/propagation (when this node was the first layer of the recursion);
or else there is a constraint

r̄i−1k + xi−1=v ≥ 1; (38)

present in the PB model. In all cases, the negation of (35) will result in x̄i−1=v for every
v ∈ Σ, giving a contradiction.

Once all the constraints in the form of (35) have been derived, the desired constraint in
the form of (34) will definitely follow by RUP, as its negation would then propagate r̄i−1k

for each k ∈ Q, contradicting one of the constraints on the second line of Encoding 2.
Putting all of this together, we can emit full justification using RUP for every edge

elimination performed by Regular, and thus we are able to derive the constraint in the form
of (33) required by the proof logging invariant.
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It should be noted that the same justifications apply when building the graph for the first
time, as it can be conceptually viewed as eliminating edges from the complete layered graph
with n + 1 layers and |Q| nodes in each layer. The deletion occurs in two passes. Firstly
it eliminates all outgoing edges from every node in layer 0 that does not correspond to the
initial state, recursing for each subsequent layer. Then secondly, it eliminates all incoming
edges from every node in layer n + 1 that does not correspond to a final state, similarly
recursing for each previous layer.

Note finally that stronger encodings of the Regular constraint are possible, and these
would not require as much proof logging during search. However, these encodings are not so
obviously correct, which is a drawback since the constraint encoding process is not (currently)
verified. It is not even clear that such encodings would give more efficient proof verification,
since they would involve having a larger set of active PB constraints for the entire verification
process.

4.3 A Complete Worked Example for Regular Propagation
Once again, to demonstrate how the proof logging procedure works more concretely, we
will now show a worked example, including the initial building of the graph and a round
of domain-consistent propagation. We will take the simple Example 1 from Pesant [19], of
a regular language membership constraint on five variables X1, . . . , X5 each with domain
{0, 1, 2}, and using the DFA M as shown in Figure 2a.

For the PB encoding, we will omit the constraints encoding the domains and equals flags
and focus on the constraints present in Encoding 2. We can see that we have five states
numbered 0 . . . 4, and five variables in the sequence, so the model would first define:

r00 + · · · + r04 ≥ 1; . . . r50 + · · · + r54 ≥ 1; (39)
−r00 − · · · − r04 ≥ −1; . . . −r50 − · · · − r54 ≥ −1; (40)

saying that we have to have exactly one of the state-position flags set for each position. Next
for each position i we would define eight PB constraints corresponding to the eight valid
transitions:

r̄i0 + x̄i=0 + ri+11 ≥ 1; r̄i0 + x̄i=2 + ri+14 ≥ 1; r̄i1 + x̄i=0 + ri+11 ≥ 1;
r̄i1 + x̄i=1 + ri+12 ≥ 1; r̄i2 + x̄i=0 + ri+13 ≥ 1; r̄i2 + x̄i=1 + ri+12 ≥ 1;
r̄i3 + x̄i=0 + ri+13 ≥ 1; r̄i4 + x̄i=2 + ri+14 ≥ 1;

(41)

along with constraints of the form

r̄iq + x̄i=v ≥ 1; (42)

for the remaining seventeen invalid transitions. Finally, we would have constraints saying
that we have to start in an initial state and end in a final state:

r00 ≥ 1; r53 + r54 ≥ 1. (43)

Propagation depends on us having first built a valid graph, with nodes as shown in
Figure 2b. As mentioned, this occurs in two passes, with the forward pass collecting nodes
that can be reached from the initial state. This corresponds to removing outgoing edges only
reachable from nodes other than the initial state.

So to begin with, we traverse the two edges incident to node q0
0 , reaching nodes q1

1 and q1
4

and thereby eliminating all other edges. These are the two edges shown in Figure 2b. Since
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(a) A DFA M recognising the regular expression
00*11*00*+2*. Double circles indicate accepting
states.
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(b) The first traversal in the forward pass for build-
ing the layered multigraph used in propagation of
Regular(X1, . . . , X5, M).
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(c) The same multigraph after the forward pass is
complete.
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(d) The same multigraph after the backwards pass
is complete.

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

N0 N1 N2 N3 N4 N5

(e) After inferring that X3 ̸= 1, the multigraph is
in an invalid state.
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(f) The same multigraph after its consistency prop-
erties have been re-established.

Figure 2 Propagation of the regular expression 00*11*00*+2* on the variables X1, . . . , X5,
showing the initial state, and then the effect of propagating X3 ̸= 1.
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we are eliminating outgoing edges we are effectively in the third case of the proof logging
procedure from the previous section, however, as there are no previous states to eliminate we
simply need to log constraints in the form of (34) for each of the six eliminated edges:

r̄01 + x̄0=0 ≥ 1; r̄01 + x̄0=1 ≥ 1; r̄02 + x̄0=0 ≥ 1;
r̄02 + x̄0=1 ≥ 1; r̄03 + x̄0=0 ≥ 1; r̄04 + x̄0=2 ≥ 1;

(44)

and these will all follow by RUP because we have r00 ≥ 1 in the PB model. Continuing,
we recursively collect edges reachable from the initial node, consequently eliminating all
outgoing edges for any node that is not reached. The result of this is shown in Figure 2c.

At each layer, we can follow this same proof logging procedure for eliminating outgoing
edges. For example, we do not collect (q2

3 , q3
3) at layer 2, since q2

3 is not reached as part of
the forward pass. So we would like to log

r̄23 + x̄2=0 ≥ 1; (45)

for this eliminated edge, but this does not follow by RUP. Despite us having logged constraints
in the form of (34) for each eliminated incoming edge to q3

2 , none of these constraints contain
either r23 or x2=0, as they concern the previous layer, and so no further propagation takes
place from the negation of (45). Hence, as discussed, we first log

r̄10 + r̄23 ≥ 1; r̄11 + r̄23 ≥ 1; r̄12 + r̄23 ≥ 1; r̄13 + r̄23 ≥ 1; r̄14 + r̄23 ≥ 1; (46)

which all do follow by RUP, and then our constraint (45) can be logged.
After this process is complete, the backwards pass takes place, first eliminating incoming

edges from any nodes in the last layer corresponding to non-final states, and then recursively
eliminating all incoming edges from any node that lost all of its outgoing edges. The complete,
correctly initialised state of the graph after this backwards pass is shown in Figure 2d.

Following the proof logging procedure for eliminating incoming edges, in this direction
we simply need to log a constraint in the form of (34) for each, and these will follow by RUP,
as discussed.

At this point, some basic inferences about variable value pairs can already be made, such
as X0 ̸= 1 and X4 ̸= 1. Due to all the constraints that have already been logged, eliminating
all possible corresponding edges from consideration, the required proof logging invariant
constraint for each will follow by RUP. This concludes the graph initialisation for the Regular
propagator, and from this point onwards the structure can be updated incrementally and
restored upon backtrack, as described in detail by Pesant [19].

We will now demonstrate one such incremental update, corresponding to an execution of
domain-consistent propagation for Regular. Suppose through the course of the computation,
the assignment X3 = 1 loses support. This means the edges (q3

1 , q4
2) and (q3

2 , q4
2) are

immediately removed from the graph, and we log the RUP constraints:

r̄13 + x̄3=1 ≥ 1; r̄23 + x̄3=1 ≥ 1. (47)

At this point the state of the graph is as shown in Figure 2e, with the two highlighted
nodes having lost all of their outgoing and incoming edges respectively.

The recursive incremental update is then executed for each of these, further removing
the edge (q2

1 , q3
1) in a backwards pass, and so logging the RUP constraint

∧G =⇒ r̄31 + x̄2=0. (48)
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The edge (q4
2 , q5

3) is also removed, but because this is removed in a forward pass, we first
log

∧G =⇒ r̄30 + r̄42 ≥ 1; ∧G =⇒ r̄31 + r̄42 ≥ 1; . . . ∧G =⇒ r̄34 + r̄42 ≥ 1; (49)

before logging the required

∧G =⇒ r̄42 + x̄2=0. (50)

No further nodes lose their last incoming or outgoing edge as a result of this, and so the
required properties (and hence domain consistency) have been re-established on the graph.
The final consistent state is shown in Figure 2f.

5 Implementation and Validation

We have implemented both of these proof logging propagation algorithms inside the open-
source Glasgow Constraint Solver [17]. Our implementation adds two new constraints
Regular and SmartTable, with specific functionality to produce the required encodings
and justifying propagators. They can therefore be used in conjunction with the rest of the
constraint types already available in the solver.

We validated the implementations by first modelling some key examples. For SmartTable,
these included the representation of lexicographic ordering problems, and problems where
at most one variable takes a value, as given by Mairy et al. [16], as well as the illustrative
examples from Section 3. For Regular, we implemented both examples 1 and 2 from
Pesant [19].

We carried out further experimental validation by generating random (acyclic) smart
tables, and random DFAs on sequences of up to five variables and solving the corresponding
single-constraint problems. In all tests and examples, the solver produced an OPB model
and proof files, and we checked these using the VeriPB proof checker. We also found that
although proof logging incurs an obvious performance cost, the observed overheads were not
unreasonable, giving a slowdown factor of between 2 and 10. As proofs are written currently
written directly to disk, this can be very hardware dependent, and also dependent on how
optimised the propagator implementation is. We decided to leave further engineering and
optimisation of proof writing to future work.

During development some very subtle bugs in both propagator implementations that
had eluded conventional testing were caught immediately by proof logging. For example, in
an incremental version of the Regular propagator, an unsound inference was being made
due to mixing up variable names, but in such a way that a situation where this unsound
inference would actually lead to an incorrect solution was extremely rare (only in specially
constructed instances, created once we were made aware of the bug due to proof logging).
After correcting bugs such as these, all proofs were certified by VeriPB as being correct.

6 Conclusion

We have shown that we can efficiently justify all the reasoning that could possibly be carried
out for two families of smart extensional constraints. An interesting observation is that
justifying this reasoning required only the RUP rule, and this rule was only to provide hints
of algorithmic steps that were already being carried out by the propagators. In effect, we
are logging a sequence of “lookahead to see immediate contradiction” steps. We did not
require any explicit cutting planes derivations, and although we relied upon pseudo-Boolean
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constraints to make it simple to express reifications and negations, in principle everything we
did should also be possible in a weaker proof encoding and proof system such as CNF and
DRAT. The only caveat is that we do rely upon strong propagation properties for encoded
integer variables, which would limit approaches based upon Boolean satisfiability to integer
variables with very small domains. This is in contrast to constraints like AllDifferent and
Linear, which cannot be logged efficiently in resolution-based approaches [8, 10].

We expect that other global constraints, even those with complex propagation algorithms
will be similarly feasible to proof log using this technique. Richer smart tables, such as those
with offset or ternary restrictions [4], also fit into the framework given in Section 3.2, although
the justification of the filtering inferences for each restriction may require additional cutting
planes steps. Furthermore, the propagation of “Multi-Valued Decision Diagram”-based
constraints [14] can be viewed as a generalisation of the techniques used for the regular
language membership constraint, and so it seems very plausible that a similar proof logging
methodology as demonstrated in this paper could work here. This bodes well for being
able to provide auditable solving for most global constraints that might occur in a modern
constraint solver.
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